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1 Introduction

“I am sure that no subject loses
more than mathematics by any
attempt to dissociate it from its
history.”

J. W. L. Glaisher
English mathematician

From the outside, mathematics at higher education level could appear an
exclusive club, alienating would-be mathematicians at an early age with many its
axioms and nonsensical applied relevance or use. Many students may encounter
further encumbrances to commit to a further education pathway when they
find difficultly in recognising faces that resemble themselves within these circles
of academia. Mathematicians must be given a blank slate to do their work,
and after all, through the lens of mathematical rationale, when trying to solve
complex problems, progress often results from diverse perspectives.

Teaching of mathematical history has extended this divide further and has
brought out narratives about science that often focus on the singular, brilliant
scientist, in most cases male and European, who makes substantial contributions
through their innate genius. This is the expected outcome of a heavily western
perspective on the history of mathematics in international academia. However,
despite the ways in which the historical narrative is presented to the public, the
evolution of mathematics is hardly as straightforward and linear as it may seem
to be. We must therefore begin our delving into this history of mathematics as
an attempt to unveil our own cultural prejudices. This will allow us to dissect
our own ideas of mathematical thought to highlight the cultural links we share
with the past and to question why other elements might seem alien to us.

As well as giving us a greater understanding of our discipline’s history, it
naturally leads us to a more elementary introspective inquiry into our own un-
derstanding of why mathematics is important and what use it has in a society.
We should also, perhaps, start by asking ourselves what mathematics is to us
today. Mathematician George W. Heine separates modern answers we give into
three groups: pragmatic answers, which holds the emphasis of mathematics in
the natural sciences, pedagogical answers, that states that the study of mathe-
matics is useful for training the mind in abstract thought, and aesthetic answers,
that shows that mathematical problems can be pleasurable pursuits.1

In this paper I will use medieval Islam to present what will hopefully be
a fresh perspective on mathematical culture looked like in a time and society
almost unrecognisable to us. My focus will be the academic lifetime and works
of the Persian polymath Muhammad al-Khwarizmi in the seventh and eighth
century.

1G. Heine, ‘The Value of Mathematics - A Medieval Islamic View’, in V. Katz (ed.),
Using History to Teach Mathematics: An International Perspective, USA, The Mathematical
Association of America, 2000, p.167.
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2 Historical Background

We would be forgiven for thinking that ancient mathematics had solely sprouted
from a practical necessity, yet in its long and messy history it not only dealt
with practical use but with the abstract and the imaginary, often only limited
by perspective. The great ancient civilisations constructed their own languages
of mathematics, constantly producing new theories and methods in the pursuit
of knowledge. The western-centric approach to modern science forces many
mathematicians to fade out of this rich historical tapestry, and in its naivety
attributes their given achievements to the men who came centuries after.

Students of mathematics, who throughout the world are taught under this
western standpoint, would again be forgiven for thinking that the mathematical
enlightenment during the European Renaissance of the 16th century was what
finally matched the astonishing achievements of the ancient Greeks. This mil-
lennium is often disregarded as the Dark Ages, however this approach dismisses
the fact that the international language of science during this time, for over 700
years, was Arabic. This alone burdens us with more questions we will have to
attempt to answer. Why is a discipline that has not been in the west for most
of history presented that way?

2.1 The “Golden Age” of Baghdad

The Golden Age of Islam refers to a period dated from the 8th to the 13th
century, during which the history of Islam brought about a scientific, cultural,
and economic flourishing. Ruled by various caliphates under this period, the
science of the Islamic world bloomed under the reign of the Abbāsid tribe caliph
Huran al-Rashid (c. 786-809 CE) in what was becoming the largest city in the
world at the time, Baghdad.2

He inaugurated his Daar al-Hikma, or House of Wisdom, in an effort to
begin an intellectual awakening after almost a century devoid of any worthwhile
mathematical achievements. From the 8th century to the 14th century, the great
intellectual centre of Baghdad brought together scholars familiar with Hellenic,
Indian and Babylonian cultural and religious traditions that were commissioned
to gather and translate the world’s classical texts. Al-Rashid was seen as a
patron of learning who united all these scholars under a singular government
and common language of Arabic. Although still a subject of dispute amongst
historians, the House of Wisdom’s formal function as an academy is still one of
debate complicated by a lack of physical evidence following the collapse of the
Abbāsid tribe’s caliphate. Unfortunately for archaeologists hoping to study the
era, the contents of the Daar al-Hikma were destroyed in the Siege of Baghdad
(1258 CE), leaving historians to piece together a narrative through translated
texts and surviving biographical accounts. What is certain to us is that it was
home to an extensive private library belonging to al-Rashid, which was then

2T. Chandler, ‘Four Thousand Years of Urban Growth: An Historical Census’, Lewiston,
NY: The Edwin Mellen Press, 1987.
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expanded to a public institute under his half-brother and successor Abu al-
Abbas Abdallah ibn Harun al-Rashid (c. 813-833 CE).3 This unique background
created the perfect conditions for a new kind of mathematics to be formed that
was more than a mere amalgamation of ancient traditions.

Figure 2: Depiction of an Arabic manuscript library. Maqamat of al-Hariri Illustration
by Yahyá al-Wasiti, Baghdad 1237 Bibliothèque nationale de France, MS Arabe 5847.

Ancient astrologers, physicians, engineers, architects and mathematicians
(most of which would have been seen as branches of mathematics rather than
separate disciplines) began to bear new responsibilities with the spread of Islam
and the Abbāsids rule. For instance, mathematicians were required to accurately
determine times of prayer and the direction of Mecca, to track moon phases and
codify calculations in Islamic finance. Named the qibla in Arabic, the sacred
direction of prayer for Muslims faces the Kaaba, the building at the centre
of Islam’s most famous mosque, the Masjid al-Haram in Mecca, which most
mosques are orientated toward. Although the dawn of the Islamic faith is said
to have begun around 610 CE, this mathematical geography was not available
to Muslims until the late eighth century. This is clear from the orientations of
medieval mosques which are not accurately aligned according to the definition
of the qibla.4

3S. Brentjes, R. Morrison The Sciences in Islamic Societies, The New Cambridge History
of Islam, 4, Cambridge: Cambridge University Press, 2010, p. 569.

4D. King, The Sacred Direction in Islam, Interdisciplinary Science Reviews, Vol. 10, J W
Arrowsmith, 1985, p.315.
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Figure 3: The problem of finding the direction of Mecca M from a point X requires
find the angle which XM makes with PXA. (D. King, The Sacred Direction in Islam.)

Although founded on the Islamic principles of education through various
Quranic injunctions and Hadith, the academic culture exhibited an incredible
degree of tolerance. Showing a strong interest in assimilating knowledge through
classic works outside of their heritage, this inclusivity even extended to theol-
ogy.5 Muhammed ibn Zakariya al-Razi (865-925), more commonly known by
his Latinized name Rhazes, was a notable polymath of the Islamic Golden Age
who wrote:

‘Books on medicine, geometry, astronomy, and logic are more useful
than the Bible and the Qur’an. The authors of these books have
found the facts and truths by their own intelligence without the help
of prophets.’ 6

Many Muslim scholars associated with the House of Wisdom were leaders
of their field from the eighth to the 14th century. In fact, many mathematical
studies in the medieval Latin Europe were stimulated by Latin translations
from the Arabic. One of the most important mathematical sources developed
from the House of Wisdom was the treatise on solution of polynomial equations
written by Muhammad al-Khwarizmi (825 CE).

2.2 Muhammad al-Khwarizmi

The most important ninth century mathematician, often described as the Fa-
ther of Algebra, Muhammad Ibn Musa al-Khwarizmi (or Muhammad son of
Moses from Khwarizm) was one of the most esteemed members of the House of
Wisdom. The Persian travelled to Baghdad in the early ninth century from a
region of Central Asia just south of the Aral Sea, in modern-day Uzbekistan.

5H.N. Rafiabadi, (ed.), Challenges to Religions and Islam: A Study of Muslim Movements,
Personalities, Issues and Trends, Part 1, Sarup & Sons, 2007, p. 1141.

6A. Bawadi, Muhammad ibn Zakariya al-Razi in M. Sharif (ed.), A History of Muslim
Philosophy, Otto Harrassowitz, 1963], chapter XXII, pp421-433
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Brought up as a Zoroastrian, many historians believe that he subsequently
converted to Islam. In his pioneering work, al-Kitāb al-Mukhtasar f̄ı Hisāb al-
Jabr wal-Muqābalah, ‘The Compendious Book on Calculation and Restoration’,
he opens with the line ‘Bism-Illāh al-Rahmān al-Rah̄ım’ (‘In the name of God,
the most Gracious and Compassionate’), the phrase recited before the reading
of the Quran with which a great amount of books written by devout Muslims
begin, even to this day.

Figure 4: An imaginary portrait for al-Khwarizmi derived from a soviet stamp.

Muhammad Al-Khwarizmi produced incredibly influential works in both
mathematics and astronomy and was soon appointed as the head of the li-
brary and academy of the House of Wisdom. He was first and foremost known
as a mathematician; his treatise on Hindu-Arabic numerals not only introduced
the Muslim world to the decimal place-value system, but through the Latin
translations of his work during and after the 12th century, his work contributed
to the eventual diffusion of these ideas into European mathematics.

The tabulation of the coordinates of hundreds of cities in the known world
and instructions for drawing a better map of the world in his famous Kitab surat
al-ard (Picture of the Earth) treatise secured his legacy as the first geographer
of Islam, whilst his astronomical work conducted at the Shammāsiyya obser-
vatory marked him out as one of the world’s great astronomers. Yet all these
achievements pale alongside his greatest claim to fame, which is without doubt
his book on what we now describe as algebra. In fact, the word algorithm orig-
inates from the latinization of his name, Algoritmi, thanks to his organisation
in his description of procedures.

Whilst his fame is well deserved, especially on the restoration and reduction
elements of algebra, it is only fair to say that his methods for finding unknown
quantities were based on a number of ancient traditions.
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3 A Condensed History of Algebra Up Until the
House of Wisdom

3.1 Historical Stages of Algebra

Studying the science produced from the House of Wisdom can hardly be limited
to the efforts made under Islamic rule. The development of algebra up until that
time period is as important as the produce of the Muslim scientists’ minds. It
was the amassed knowledge of the ancient world that they used to construct
such wonders in mathematics and engineering. Here we will see the efforts of
mathematicians across the centuries that eventually lined the shelves of the
House of Wisdom. This also allows us to have a general understanding of where
our protagonist al-Khwarizmi lies in the timeline of this branch of mathematics.

Historians often consider the history of algebra to be separated into two
significant parts: “classical algebra”, that was primarily concerned with the
solving of polynomial equations and “modern algebra”, which is devoted to
studying algebraic structures. The latter, also referred to as “abstract algebra”
is largely a product of the 19th and 20th centuries. The stage of classic algebra
can be broken into several distinct phases of historical thinking. These are
not limited to certain societies or regions but mostly encompass broad eras of
mathematical knowledge and understanding. The conceptual stages of algebra
as described by historian Victor J. Katz are as follows:7

• Geometric stage, where geometric methods are used as the core concepts
of algebra. This stage originates with the Babylonians through to the
ancient Greeks, and was later revived for higher order calculations by
Omar Khayyám.

• Static equation-solving stage, where the purpose is to find numbers
satisfying particular relationships. Algebra did not decisively progress
to the static equation-solving stage until al-Khwarizmi introduced gener-
alized algorithmic processes for solving algebraic problems however this
divergence from geometric algebra is best attributed to the likes of math-
ematicians Diophantus and Brahmagupta.

• Dynamic function stage, where motion is a core underlying idea. The
idea of a function was first proposed by Persian mathematician Sharaf al-
Dı̄n al-Tūs̄ı (c. 1135-1213), but the lack of explicit functions with symbols
meant that algebra did not decisively move to the dynamic function stage
until Gottfried Leibniz.8

7V.J. Katz, B. Barton, Stages in the History of Algebra with Implications for Teaching,
Educational Studies in Mathematics, Vol 66, No. 2, 2007, p. 185–201.

8P. Nasehpour, A Brief History of Algebra with a Focus on theDistributive Law and Semir-
ing Theory ,Golpayegan University of Technology, Iran, 2018, p. 2.
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Another perspective one might take is that of the evolution of the sub-stages
of development of notation from the rhetorical to the symbolic. Many authors
of historical research have also recognized four noteworthy stages of algebraic
notation in the development of algebra alongside the evolution in conceptual
understanding:

• Rhetorical algebra, in which equations are written in verse. First de-
veloped by the ancient Babylonians, this era of expression continued up
until the 16th century. For example, the rhetorical form of x + 2 = 4 is
“The thing plus two equals four”. In the later years numbers might have
been replaced with the decimal numeral system.

• Syncopated algebra, the stage which blends ideas from the rhetorical
and symbolic in which some symbolism is used but does not contain all
of the characteristics of symbolic algebra. Syncopated algebraic notation
first appeared in Diophantus’s Arithmetica (3rd century AD), followed
by Brahmagupta’s Brahma Sphuta Siddhanta (7th century). Usually pre-
sented with restrictions in the use of core axioms or operations familiar
with us today, the understanding of algebraic objects and methods are not
in line with that of symbolic algebra.

• Symbolic algebra, in which full modern symbolism is used along with
the characteristics of abstract algebra. An early concept of this can be
found in the work of Islamic mathematician Ibn al-Banna (13th-14th cen-
turies) aptly named Raf al-ijāb, ‘Lifting the Veil’, covering topics such as
continued fractions and square roots. This algebraic notion was further
developed by Abū al-Hasan al-Qalasād̄ı in the 15th century. Full sym-
bolic algebra was developed by François Viète (16th century) and later
expanded by René Descartes (17th century), introducing the modern nota-
tion and linked geometric problems to algebraic expression with Cartesian
geometry.9

9C. Boyer, Revival and Decline of Greek Mathematics, 2nd Ed., New York, Wiley, 1991,
p.180.
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3.2 Babylonian Era Algebra

Babylonian mathematics was largely based on the Sumerians’ numeric system, a
people from 4000 BCE in modern day southern Iraq. The Babylonians marked
the start of the first conceptual stage of algebra, where the concepts of algebra
are laid out in geometric form.

The Babylonians relied on a positional sexagesimal system (system of base
60) in contrast of our modern decimal system of base 10. The fact that we divide
hours into 60 minutes and minutes into 60 seconds is due to the mathematics
of Mesopotamian civilisations. A common theory for why this was states that
the Sumerians were a product of a merging of two earlier peoples with number
systems of bases 5 and 12, creating a common system on 60 for mutual under-
standing, however this might not be the case since the Babylonians relied on
a system of six groups of ten, not five groups of twelve.10 Although from our
perspective, this system is an over-complication from our simple modern system
of base 10, the Babylonians made no consistent use of zero in their mathematics.

Figure 5: Plimpton 322 is a Babylonian clay tablet, notable as containing an example
of Babylonian mathematics. It has number 322 in the G.A. Plimpton Collection at
Columbia University.

The earliest evidence of written algebraic writing is that of Old Babylo-
nian cuneiform texts on clay tablets. Most of their mathematics was conducted
within tables including multiplication, squares (not cubes), and square and cube
roots (Figure 5).11 As well as tables, the Babylonians frequently wrote problems
that attempted to find the solution of an unknown number. For example, an
ancient Babylonian problem would take the form: ‘What is the number, when
added to its reciprocal, gives a known number?’ Historians class this sort of

10S.L. Macey, The Dynamics of Progress: Time, Method, and Measure, Atlanta, Georgia:
University of Georgia Press, , 1989, p. 92.

11“158. Cuneiform Tablet. Larsa (Tell Senkereh), Iraq, ca. 1820-1762 BCE. – RBML,
Plimpton Cuneiform 322”, Jewels in Her Crown: Treasures of Columbia University Libraries
Special Collections, Columbia University, 2004.
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statement in which equations are written in verse as the dawn of rhetorical al-
gebra. First developed by the ancient Babylonians, this era of notation remained
dominant up until the 16th century.

With our modern approach we would write the unknown number as x and
the known number as b. We can then express this as an equation:

x+
1

x
= b.

Rearranging the equation into the more familiar form produces x2− bx+ 1 = 0.
For this particular example it is of the form:

x =
b

2
±

√
(
b

2
)2 − 1.

This informs us that, if given the value of b, you can work out x. The Babyloni-
ans knew this idea outside of our formulation having written entirely in prose,
as did the Greeks. Other problems presented a concrete problem to be solved,
such as the partitioning of a field amongst a certain number of sons, rather than
providing a general algorithm for any similar problems.

Although the Babylonians and the Greeks pre-date the ‘Golden Age of Islam’
in terms of methods of solution, a huge portion of al-Khwarizmi’s work does not
emerge in the course of solving a particular problem but rather provides the
algorithm to solve an infinite class of problems. The concept of an equation for
its own sake, although in prose, is laid out at the start; an exposition beginning
with primitive terms that henceforward lays down an explicit algorithm to fol-
low. The abandonment of attempting to solve a particular problem to provide
a rhetorical ‘algorithm’ is what sets him apart from these very similar texts. It
is a contrast from some Greek sources that supplied various specific examples,
leaving the reader to assume that it can apply to other similar circumstances;
general solutions were written out but not in general terms.
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3.3 Ancient Greek Geometry and Euclid’s Elements

The path down which history has taken ancient mathematical ideas must pass
through a dead museum we think, unlike the works of familiar European math-
ematicians that fill our textbooks and brief introduction to modules that have
stood the test of time. If only a handful of figures have been taught to us as
founders of fresh ideas of their time, then it is only natural to conclude that
ancient natural philosophy is simply just exactly that, ancient. This ancient
path however carries through ideas which are very much alive and have aided
scholars across the world in their quest to expand mathematical knowledge.

In the scientific realm of the ancient Greeks, scriptures were cited as the final
authority for the truth of a mathematical proposition. There was no universal
standard of truth other than tradition. If any disagreement arose in the inter-
pretation of a verse of text, there was neither a test nor proof for the veracity of
a given statement. It is, perhaps, the detail that gave these texts some verisimil-
itude. This way of thinking extended universally across the ancient world. The
Greek natural philosophers contributed to the philosophy of science their way
of thought rather than their intellectual rigour.

It was Euclid’s Elements (300 BCE), arguably the apotheosis of Greek sci-
entific thinking, in which a new academic standard was introduced; his famous
work on geometry paved the way for an abstraction of the modern scientific
method introducing a new test and authority for the substantiation of truth. He
had his own theory involving second-order equations that was laid out through
the façade of geometric theorems. First translated by al Hajjaj ibn Yusuf, a
contemporary of al-Khwarizmi and notable governor of the Umayyad Caliphate,
under the reign of al-Rashid, the Arabic translation of the Elements was fur-
ther improved during the period of the seventh caliph al-Ma’mun’s era House
of Wisdom.

A familiar problem for mathematicians to test their understanding of equa-
tions of the second degree can be written using Euclid’s Elements (Book Two,
Proposition Eleven): ‘Divide the straight line AC, which is of known length, into
two unequal segments: AB and BC. What are the lengths of these segments such
that a square of side AB will have the same area as a rectangle of sides AC and
BC?’This problem is an example of a requirement of the solution for positive
real roots of a quadratic equation solved geometrically. Around the same time
an attempt was made by the Greeks to seek out a geometric construction for the
solution of the cubic by expanding the work in the Elements. This endeavour
was in vain as it is now known that the general cubic cannot have a solution
with the use of Euclidean tools.12

As the most coherent work on geometry the world had ever seen, the El-
ements soon came to be a standard text that was used in schools across the
globe up until the turn of the 20th century. Mathematics however required
a far neater and more efficient way of transposing this question to set up the
problem algebraically.

12C.D. Smith, Developments in Secondary Mathematics. Mathematics News Letter 5, no.
4, 1930, p. 4–8.
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When mathematicians express Euclid’s geometric constructions in our mod-
ern algebraic language, they give birth to algebraic identities and solve quadratic
equations. This symbolism would have been completely alien to the Greeks
however and was never used in their work. There were no such thing as general
symbolic operations in anything resembling abstract language and hence they
join the Babylonians in the rhetorical algebra stage of notation. This similarity
with the Babylonians extended to the definition of numbers. Zero and nega-
tive numbers were not considered numbers since Euclid’s stipulation was that
a number was a collection of units. Even the understanding of the number one
was ambiguous since it did not fall under the stipulation of a collection.

Several historians state that there is not a clear answer as to the question
of whether the Arabic translations of Elements would have been available to
al-Khwarizmi. The Persian polymath dedicated one chapter of his book solely
to geometry called Bāb al-Misāha or the ‘Door to Geometry’, however the fact
is that there are no direct references to Euclid’s Elements. Although he makes
use of a particular proposition from Book II, he has neither definition, nor
axioms nor any geometric presentation of the direct Euclidian kind. The Door
to Geometry chapter is purely one of mensuration, a compilation of rules for
the use of land surveyors.

Figure 6: A diagram taken from a copy of Euclid’s Elements Book II Proposition 4.

Modern historians would argue that it is the accompaniment of a geometric
presentation alongside his recipe for algebraic solution in another section of his
treatise that suggests the awareness and the inspiration of Euclid’s Elements.
Whatever the truth, historians of mathematics will agree that those aspects of
his work on algebraic methods that cannot be classed as original thought are
not important features. The diagrams showing the completion of the square
that date back to Babylonian times for example are only used as a means of
justifying the solutions achieved via algebraic methods.
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3.4 Diophantus’s Arithmetica

Hellenistic mathematician Diophantus lived in Alexandria (Egypt) between 150
and 250 CE. Very little is known about his life other than the fruits of his fan-
tastic mind. His multi-volume manuscript (the surviving content has since been
subdivided into nominal ‘books’, but these don’t necessarily correspond to phys-
ical volumes) Arithmetica pre-dates our Persian mathematician by about five
centuries although translations of Diophantus’ works were not made available
in Arabic until several decades after The Compendious Book on Calculation and
Restoration. Divided into thirteen books, only ten survived with six in the orig-
inal Greek and four thought to have been translated from Greek to Arabic by
the Syrian Christian philosopher and mathematician Qusta ibn Luqa (820-912).
Historian of mathematics Norbert Schappacher has written:

‘[The four missing books] resurfaced around 1971 in the Astan Quds
Library in Meshed (Iran) in a copy from 1198 AD. It was not cata-
logued under the name of Diophantus (but under that of Qusta ibn
Luqa) because the librarian was apparently not able to read the main
line of the cover page where Diophantus’s name appears in geometric
Kufi calligraphy.’ 13

Arithmetica in the third century tackled a wide range of mathematical prob-
lems including multiplying positive and negative terms, simplifying quantities
and use of different powers of the quantity. Although the title describes what
we would today class as a separate branch of mathematics, this higher-order
perspective on arithmetic can be recognised in the modern day as algebraic
thinking. Several historians will attribute Diophantus’s mathematics as the
transition from the geometric to the static equation-solving stage, where the
objective is to find numbers satisfying certain relationships, however algebra
did not decisively move to the static equation-solving stage until al-Khwarizmi
introduced generalized algorithmic processes for solving algebraic problems. The
work was the first to include abbreviations to represent powers, operations and
unknowns, thus using what is now known as syncopated algebra. The main
difference between that and our modern notation is that syncopation lacked a
specific set of symbols for operations and relations. For example, from modern
notation we would have:

x3 − 2x2 + 10x− 1 = 5

Rewritten for a symbol-for-symbol translation as:

(x31 + x10) − (x22 + x01) = x05

13N. Schappacher, Diophantus of Alexandria : a Text and its History (PDF),Institut de
Recherche Mathématique Avancée, 2005, p. 18. Retrieved August 2021.
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Would be written in Diophantus’s syncopated notation as:

Kυα ζι t ∆υβ Mα ἴσ Mε 14,15

Symbol Representation

α 1

β 2
ε 5
ι 10
ἴσ equals
t subtraction
M the zeroth power
ζ the “first power”

∆υ the second power
Kυ the third power

Diophantus provided detail on solving equations using restoration and bal-
ancing, the titular techniques of al-Khwarizmi’s text, using these methods to
solve polynomials up to the 6th degree. He was the first to work on problems
that would have multiple if not an infinite set of solutions. Rooting his equa-
tions in geometric problems however meant that his work did not progress to a
radical new branch of mathematics.

Most famously, equations involving two or more unknown values raised to
any power, such that the solutions are always integer numbers are called Dio-
phantine equations, although he himself did not provide any general methods of
solution (the manipulation of these equations gave rise to the term Diophantine
analysis). He also allowed positive rational numbers as possible solutions, not
just integers. This was as far as his mathematical tolerance extended since he
called a problem whose only solutions were negative “absurd”.16

Ultimately, Diophantus was mostly interested in number theory: numbers
and the relationships between them, whilst Euclid’s interest lay in the geometric
branch of this mathematical bush. Similar to the works of Indian mathematician
Brahmagupta, Arithmetica’s scope of interest was broad and covered a wide
range of various modern branches of mathematics. The Muslims that came after
them employed a clear-cut argument from problem to solution in an organised,
systematic fashion – respects in which neither Diophantus nor Brahmagupta
excelled.

14J. Derbyshire, Unknown Quantity: A Real And Imaginary History of Algebra, Washing-
ton, DC, Joseph Henry Press, 2006, p. 35-36.

15R. Cooke, The History of Mathematics: A Brief Course, Wiley-Interscience, 1997, p.
167-168.

16The most famous Diophantine equation is that highlighted by the famous Pierre de Fermat
in his personal copy of Claude-Gaspard Bachet’s 1621 edition of the Arithmetica. It states
that there are no integer values for x, y and z such that xn+yn=zn, when n is greater than 2.
“It is impossible to separate a cube into two cubes or a fourth power into two fourth powers,
or in general, any power higher than the second into two like powers. I have discovered a
truly marvellous proof of this, which this margin is too narrow to contain”.
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3.5 Brahmagupta

Indian mathematician and astronomer Brahmagupta of Gujrat (c. 598-670 CE)
developed very precise procedures for linear and quadratic equations with mul-
tiple variables. Despite the fact that numbers were written out in words as
opposed to symbols, his work, Brahmasphutasiddhanta was the most advanced
number theoretic text the world had ever seen. Within this widely influential
text, he presented the general form of a quadratic equation and even included
a technique for solving Pell equations (any Diophantine equation of the form
x2 − ny2 = 1).

His work also consisted of the first truly definitive remark on the number
zero. He stated that zero was the result of combining a credit and debit of equal
value and also defined several axioms such as one plus zero is one, one minus
zero is one and one time zero is zero. These axioms defined an important step
in algebra since they defined zero as a number in its own right. Brahmagupta
named this number ‘sunya’ which meant empty or space. When the Arabs made
use of Indian numeration in the tenth century, the name for zero was translated
to ‘sifr’, the Arabic word for empty.

A great interest for the Islamic mathematicians was the reception and trans-
mission of Indian ideas on numeration to which decimal fractions were added.
In fact, records from Said-Al-Andali, an Arabic scholar from the time, show that
al-Khwarizmi was familiar with Indian works on number theory. In his book
Tabaqat al-‘Uman (Categories of Notation) he informs us that al-Khwarizmi
had personally had a hand in translating work from that of Brahmagupta, a
renowned Indian mathematician. Yet this close familiarity of the computa-
tional portions of Brahmagupta’s work seems to be in question since no Arabic
scholars made use of negative numbers or of the syncopation found in his work.
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4 The Compendious Book on
Calculation by Restoration and Balancing

4.1 Legacy

Figure 7: Title page of a copy of The Com-
pendious Book on Calculation by Restora-
tion and Balancing.

Al-Khwarizmi’s book on the solution
of linear and quadratic equations is
regarded as the foundation and the
cornerstone of this branch of math-
ematics, eventually granting him the
grand title of Father of Algebra. al-
Kitāb al-Mukhtasar f̄ı Hisāb al-Jabr
wal-Muqābalah, ‘The Compendious
Book on Calculation by Restoration
and Balancing’, was the treatise that
cemented algebra as a discipline in
its own right, collating various differ-
ent algebraic methods to form algo-
rithmic approaches to a wide range of
problems.

It was in fact the Latin translation
of his book title, Liber algebrae et al-
mucabala, which resulted in the name
‘algebra’ being applied to the theory
of equations, with the definition ex-
panding to the much wider abstract
sense we know today. This text, al-
though containing little mathemati-
cal concepts that were original, was
widely used in both Arabic and Latin
and was regarded as the defining ref-
erence for linear and quadratic equa-
tions. Whilst the use of the word is
linguistically anachronistic in that its

origins are from the ninth century, most people asked today would say its core
use would refer to the school subject in which equations are solved. When
attempting to describe the mathematics before this period of enlightenment,
historians have also extended the use of the word to refer to manipulation of
abstract quantities according to (sometimes contentious) rules such as ‘Greek
geometric algebra’ and ‘Babylonian algebra’.

What separated algebra from the geometry or arithmetic in the years of
Islamic scientific development was this idea of a broader concept and unifying
theory, different notions to that of Greek writers, that had not happened before.
It was quite a distinct move away from the ancient Greek idea of mathemat-
ics which by today’s definition was primarily geometry. The Islamic ‘al-jabr’
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allowed rational numbers, irrational numbers, and geometrical magnitudes and
more to all be treated as ‘algebraic objects’. Given the ubiquitous mathematical
problems in society that needed to be solved algebraically, whether involving
working out areas of land for agriculture, calculating inheritance or taxes, it
would hardly be surprising that ‘algebra’ in some form existed long before the
Golden Age of Islam. The question as to when algebra as a new branch of
mathematics originated relies on our definition of algebra itself.

4.2 A Compilation and Extension of Existing Rules

We see how ‘algebra’ is derived from ‘al-jabr’. There are several literal transla-
tions of the title of the treatise (concerning al-jabr and al-muqabala). The former
(completion or restoration), which was also used in English for a time for the
setting of a broken bone, denotes the transference of a negative quantity from
one side of the equation to the other. The latter (balancing or opposition) as
the adding of the same term on the same side. Repeated application of this rule
makes quantities of each type (‘square’,‘root’,‘number’) appear in the equation
at most once, which helps to see that there are only six basic solvable types of the
problem.
His work is split into three parts:

1. An exposition on the rules for solving equations, followed by 40 sample
problems.

2. A section on mensuration.

3. Practical uses of the Islamic rules of inheritance.

The importance of this final section (that is half the book) is shown by the
emphasis given in al-Khwarizmi’s abstract: 17

‘A short work on calculating by al-jabr and al-muqabala, confining
it to what is easiest and most useful in artithmetic, such as men
constantly require in cases of inheritance, legacies, partition, law-
suits, and trade, and in all their dealings with one another, or where
the measuring of lands, the digging of canals, geometric computation,
and other objects of various sorts and kinds are concerned.’ 18

The treatise begins with a brief outline of the decimal numbering system
and then in six chapters presents the six types of equations which illustrate
the elementary operations in which linear and quadratic equations are handled.
Thus, the equations are verbally described in terms of ‘squares’ (what would
today be ‘x2’), ‘roots’ (what would today be ‘x’) and ‘numbers’ (‘constants’:

17D.A. King, “Mathematics applied to aspects of religious ritual in Islam”. In I. Grattan-
Guinness (ed.). Companion Encyclopedia of the History and Philosophy of the Mathematical
Sciences, 1st Ed., JHU Press. 2003, p. 83.

18A. Jamil, The Determination of the Coordinates of Positions for the Correction of Dis-
tances between Cities - a Translation from the Arabic of al-Biruni’s Kitab Tahdid Nihayat
al-Amakin Litashih Masafat al-Masakin, American University of Beirut, 1967.
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ordinary spelled out numbers, like ‘forty-two’). It is important to note, however,
that only positive numbers were considered true solutions to equations. The six
types, with modern notations, are:

• squares equal roots (ax2 = bx)

• squares equal number (ax2 = c)

• roots equal number (bx = c)

• squares and roots equal number (ax2 + bx = c)

• squares and number equal roots (ax2 + c = bx)

• roots and number equal squares (bx+ c = ax2)

In the second section of his book, propositions from Book II of Euclid’s Ele-
ments are used in order to accompany his algorithms with geometric examples.
Al-Khwarizmi was in fact the first to make this geometric justification for the
solution of the quadratic from these elementary propositions.

Figure 8: A page from a copy of ‘The Compendious Book on Calculation by Restora-
tion and Balancing’ showing a geometric justification.

One of the core elements that define algebra is the use of the unknown.
When al-Khwarizmi describes his unknown object, there is no specific allocation
of value. Thus, although written in prose, al-Khwarizmi is in fact closer to the
algebra we know of today in our use of the unknown quantity. The thing or
‘shay’ in Arabic was no longer simply a placeholder for numbers, but a newly
created algebraic object that was able to be manipulated in its own right. The
‘shay’ was an entity ready to have the many rules of ‘al-jabr’ enacted on it.
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5 The Algebra after al-Khwarizmi

5.1 The Continuation of Islamic Mathematics

Many Muslim scholars continued the development of algebra both in the House
of Wisdom and beyond following al-Khwarizmi’s death in 850 CE. Arguably on
whom his work had the most influence on was the Egyptian mathematician Abu
Kamil Shuja ibn Aslam (c. 850–930 CE) who became the first mathematician
to accept irrational numbers as solutions and as coefficients in an equation.19

Writing his Algebra around 900 AD based on al-Khwarizmi’s, he was also the
first to find a solution for three non-linear simultaneous equations with three
unknown variables.20 Approaching the solution of a quadratic equation as a
number rather than a geometric representation, along with making use of the
increasingly popular decimal system, Abu Kamil’s approach pushed for the ce-
menting of a general abstract idea of a number in mathematics, essential for the
subsequent creation of an full equation as we know today.

Another great contribution comes from the 10th-century Persian mathemati-
cian and engineer Al-Karaji (c. 953-1029 CE). Perhaps associated with the most
recognisable shift in algebraic notation, he replaced geometric operations with
arithmetic ones. His work on algebra included rules taken from al-Khwarizmi’s
work on manipulating polynomials but extended much further with his enquiry
into binomial coefficients. He was also a mathematician that investigated Pas-
cal’s triangle (along with Indian mathematicians centuries before Pascal).21 Al-
Karaji’s work could be seen as the inspiration for the beginning of the dynamic
function conceptual stage that would dawn a few hundred years down the line
of the Islamic Golden Age.

Omar Khayyam (c. 1050–1123 CE) was a noteworthy Persian polymath
who’s work on astronomy and geometry solidified Islam’s Golden Age. His
1070 CE work Risālah fil-barāh̄ın alā masāil al-jabr wal-muqābalah, ‘Treatise on
Demonstration of Problems of Algebra’, made reference to Greek knowledge of
intersecting conic sections to problems concerning cubic equations. His approach
of methods of solution were the same as many other Islamic mathematicians - he
provided the systematized axioms and application of them with the geometric
justification. Within this work he included his research on the triangular array
of binomial coefficients (Pascal’s triangle). Seven years later, he published his
book on non-euclidean geometry entitled ‘Sharh ma ashkala min musadarat
kitab Uqlidis’ meaning ‘Explanations of the Difficulties in the Postulates of
Euclid’. This was later translated from the Arabic to ‘On the Difficulties of
Euclid’s Definitions’. Apart from his scientific pursuits, he had also gained fame
through the literary circles with his poems. Finally translated into English in
the 1800s, he wrote over a thousand verses or ‘rubaiyat’.

19J. Sesiano, ‘Islamic mathematics’ in H. Selin(eds.), Mathematics Across Cultures: The
History of Non-Western Mathematics, Springer, 2000, p. 148.

20J.L. Berggren, The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A
Sourcebook. Princeton University Press, 2007, p. 518.

21J.L. Coolidge, The story of the binomial theorem, The American Mathematical Monthly,
Vol. 56, No. 3, 1949, p. 147–157.
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5.2 Late Middle Ages and Modern Algebra

The dawn of the twelfth century saw a new wave of Islamic knowledge flowing
into Europe through translations made in the Crusader states, Italy and Spain.
Seen as an “academic” enterprise before the European Renaissance, Islamic
mathematics had little use in daily work in commerce or construction in Italy up
to the 13th and 14th centuries. Al-Khwarizmi’s book on algebra was translated
into Latin in 1145 as Liber algebrae et almucabala by the Englishman Robert of
Chester and around a similar time by the Italian Gerard of Cremona.

Leonardo of Pisa, commonly known as Fibonacci, was instrumental in intro-
ducing the West to ‘modus Indorum’ (translated to ‘method of the Indians’) or
the Hindu-Arabic numeral system through his book Liber abbaci (1202).22 In his
preface he makes use of the Latin term ‘algorismus’ describing al-Khwarizmi’s
writings on Indian calculation, yet Fibonacci only makes mention of the first
name of al-Khwarizmi once in Chapter 15, using the Latin ‘Maumeht’, possibly
to give the impression that the bulk of his work was innovatory.23

Several Italian mathematicians furthered the mathematical knowledge by
adding numerical solutions for cubic and biquadratic equations which gradually
developed into the study of the character of the roots. Descartes introduced
mathematical notation and along with Girard concluded that an equation of n
degree can have no more than n roots. The fundamental theorem of algebra
was proven by Gauss in 1799.

22R.E. Grimm, The Autobiography of Leonardo Pisano, Fibonacci Quarterly, Vol. 11, No.
1, 1973, p. 99–104.

23L.E. Sigler, The English Edition of Fibonacci’s Liber Abaci, New York, Springer-Verlag,
2002.
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6 Conclusion

“One can conceive history as an
argument without end.”

Pieter Catharinus Arie Geijl
Dutch historian

Mathematicians can often succumb to the idea that mathematics is a unified
ahistorical entity guided by universal rationality, yet we can see that even from
this very brief exploration of the development of algebra that our discipline is a
diverse process. It is not separate from the historical context in which it lies; it
is in fact guided by various interests, beliefs and values in a given time and place
in the world. Researching history as a mathematician can feel like attempting
to describe a fractal - you can achieve a great sense of understanding of a culture
or concept in any one frame but there is always a great amount of scope within
that can be given to create as close to an accurate picture as possible.

Perhaps it is in our tunnel vision of the sciences that we view a “nomad”
science as eccentric and wholly different from the imperial. This is after all
what we might think of the Greeks before Euclid, and unless we are careful,
as a modern scientist these thoughts come naturally. However, it is often the
case that state science retains of the nomad only what can be appropriated,
with methods and motivations of mathematical pursuit conglomerated as less
rigorous attempts - or even irrelevant according to our modern scientific un-
derstanding. In the philosopher Kuhn’s Paradigm Theory, he points out that
hypothesis and experimentation do not exist in isolation but are dependent
on particular methodologies, terminologies, principles, tools, assumptions and
axioms. This philosophy of scientific knowledge, although part of a larger argu-
ment for the basis of scientific knowledge, opens the eyes to the context given
in any historical mathematical development.

Although at a first glance it appears that medieval Islam shares the same
three modern reasons for the pursuit of mathematics, that is the pragmatic,
the pedagogical and the aesthetic, the culture’s answers would hold different
significance. The importance of religious duty and the emphasis on the fulfilment
of the soul in medieval Islamic culture produces a contrast against ours in a
metaphysical dimension. This is how asking what mathematics means to us can
shift a perspective.

21



Even in such a brief cross section through the history of something as seem-
ingly simple as the number zero, our journey would need to span through vari-
ous different geographical regions and time periods to get the full scope of the
concept. In what this paper promised as a description of algebra in Islamic
mathematics, it would be an incredibly difficult task to achieve without first
looking at the knowledge available at the time, how it came to be and how it
influenced further development. Maybe we are too concerned with pinpointing
the conception of an idea that we fail to realise that perhaps the idea just ex-
isted in different forms. That could be something that we are missing from the
teaching of western mathematics.

What we have learnt is that the motivation for what we produce and present
is key to its understanding. The only limits are the attention span of your
readers and the lens you want to shoot your subject in. Nonetheless, the course
of history is the same.

22



Reference List

• Bawadi A., Muhammad ibn Zakariya al-Razi in M. Sharif (ed.), A History
of Muslim Philosophy, Otto Harrassowitz, 1963], chapter XXII, pp421-433

• Berggren J.L., The Mathematics of Egypt, Mesopotamia, China, India,
and Islam: A Sourcebook. Princeton University Press, 2007, p. 518.

• Boyer C., Revival and Decline of Greek Mathematics, 2nd Ed., New York,
Wiley, 1991, p.180.

• Brentjes S., Morrison R. The Sciences in Islamic Societies, The New Cam-
bridge History of Islam, 4, Cambridge: Cambridge University Press, 2010,
p. 569.

• Chandler T., ‘Four Thousand Years of Urban Growth: An Historical Cen-
sus’, Lewiston, NY: The Edwin Mellen Press, 1987.

• Cooke R., The History of Mathematics: A Brief Course, Wiley-Interscience,
1997, p. 167-168.

• Coolidge J.L., The story of the binomial theorem, The American Mathe-
matical Monthly, Vol. 56, No. 3, 1949, p. 147–157.

• Derbyshire J., Unknown Quantity: A Real And Imaginary History of Al-
gebra, Washington, DC, Joseph Henry Press, 2006, p. 35-36.

• Grimm R.E., The Autobiography of Leonardo Pisano, Fibonacci Quarterly,
Vol. 11, No. 1, 1973, p. 99–104.

• Heine G., ‘The Value of Mathematics - A Medieval Islamic View’, in V.
Katz (ed.), Using History to Teach Mathematics: An International Per-
spective, USA, The Mathematical Association of America, 2000, p.167.

• Jamil A., The Determination of the Coordinates of Positions for the Cor-
rection of Distances between Cities - a Translation from the Arabic of al-
Biruni’s Kitab Tahdid Nihayat al-Amakin Litashih Masafat al-Masakin,
American University of Beirut, 1967

• Katz V.J., Barton B., Stages in the History of Algebra with Implications
for Teaching, Educational Studies in Mathematics, Vol 66, No. 2, 2007,
p. 185–201

• King D., The Sacred Direction in Islam, Interdisciplinary Science Reviews,
Vol. 10, J W Arrowsmith, 1985, p.315.

• King D.A., “Mathematics applied to aspects of religious ritual in Islam”.
In I. Grattan-Guinness (ed.). Companion Encyclopedia of the History and
Philosophy of the Mathematical Sciences, 1st Ed., JHU Press. 2003, p.
83.

23



• Macey S.L., The Dynamics of Progress: Time, Method, and Measure,
Atlanta, Georgia: University of Georgia Press, , 1989, p. 92.

• Nasehpour P., A Brief History of Algebra with a Focus on theDistributive
Law and Semiring Theory ,Golpayegan University of Technology, Iran,
2018, p. 2.

• Rafiabadi H.N., (ed.), Challenges to Religions and Islam: A Study of
Muslim Movements, Personalities, Issues and Trends, Part 1, Sarup &
Sons, 2007, p. 1141.

• Schappacher N., Diophantus of Alexandria : a Text and its History (PDF),Institut
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