Enhancing macroeconomic Agent-Based
Models (ABMs) with Inverse

Reinforcement Learning

Data-anchored household objectives for crisis-policy
evaluation

Elena Lickel

Department of Computer Science,

University of Oxford

UNIVERSITY OF

(0),43(0)23D)

15 January 2026

A4O0>» «F>» «=F» 4« 3 = Qv



What are macroeconomic Agent-Based Models (ABMs)?
Bottom-up simulation with heterogeneous agents

> An Agent-Based Model (ABM) represents the economy as
interacting agents: households, firms, banks,
government.

» Agents face constraints (income, debt, liquidity, credit
limits) and follow decision rules.

» Macro outcomes emerge endogenously: defaults,
unemployment, inequality, contagion.



State of the art: Multi-Agent Reinforcement Learning

» ABMs increasingly use reinforcement learning (RL) /
multi-agent RL (MARL) to replace fixed heuristics.

» Benefit: households for example can adapt when
constraints tighten and policy rules change (crisis regimes).
» This supports crisis analysis:
» policy counterfactuals (transfers, moratoria, credit support)
» nonlinear cascades (defaults — bank stress — credit crunch)

» distributional outcomes (effects differ by liquidity and debt
exposure)



State of the art: Multi-Agent Reinforcement Learning
Why learning agents helps in crises

» ABMs increasingly use reinforcement learning (RL) /
multi-agent RL (MARL) to replace fixed heuristics.
» Benefit: households for example can adapt when
constraints tighten and policy rules change (crisis regimes).
» This supports crisis analysis:
» policy counterfactuals (transfers, moratoria, credit support),

» nonlinear cascades (defaults — bank stress — credit
crunch),

» distributional outcomes (effects differ by liquidity and debt
exposure).

Limitation

Learning behaviour still requires specifying what households
optimise.



Bottleneck: the reward/objective is hand-designed

MARL improves adaptation, not the underlying assumptions

» In practice, household rewards are often hand-designed
(utility proxies, smoothing, default penalties).

» Under crisis regimes, multiple objectives are plausible; the
reward is underdetermined.

» Small reward changes can shift behaviour: buffer use,
deleveraging vs default, risk-taking.

Policy rankings can change under equally plausible reward
choices.



Why the reward matters for Ethics
The reward encodes normative trade-offs

Concrete crisis-policy question

In a shock, how should policy trade-off default prevention,
consumption stability (essentials), and inequality?

» The reward is a value-laden behavioural assumption: it
defines what counts as “good outcomes”.

» If it is implicit, conclusions are hard to justify, audit, or
contest.

» Ethical stakes: reward choices can change who benefits
from interventions (e.g., moratoria vs transfers).

Ethics goal = Make behavioural assumptions explicit and
auditable, then stress-test policy conclusions.



Proposed solution: Inverse Reinforcement Learning (IRL)
to infer household objectives

From reward engineering to data-anchored objectives

» In RL: objective — behaviour.
» In IRL: behaviour — objective.

» Use anonymised microdata to infer an objective that
explains observed choices under constraints.

» Output: an inspectable objective used as the household
reward inside the ABM.

Adversarial IRL as proposed implementation

AIRL is designed to recover objectives that transfer better across
regime changes (policy/shock changes).



Approach in one figure
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Keep the RL architecture; replace hand-designed household rewards with

AIRL-inferred objectives.




Data is central (and so are the ethical constraints)

Anonymised microdata + governance + proportional use

» Data: anonymised household microdata (e.g., HFCS).

» Signals (examples): income, assets/liquidity buffers,
liabilities/debt service, housing proxies, employment status.

Ethical safeguards

» Approved access via formal application and secure
conditions;

» data minimisation (only what is needed);

» purpose limitation (objective inference + subgroup policy
evaluation);

» no re-identification/linkage;
» reporting only in aggregates/subgroups.



Conclusion

Data-anchored objectives for transparent crisis-policy simulation

» ABMs are useful for crises because they capture
heterogeneity, constraints, and cascades.

» MARL improves adaptation, but the reward/objective
remains the normative bottleneck.

» IRL/AIRL makes that objective explicit, inspectable, and
data-anchored.

» This supports auditable assumptions and
robustness-tested policy rankings under strong data
governance.



Thank you for your attention!
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