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Introduction
Structured linear controlled differential equations (SLiCEs) are

a novel framework for understanding RNNs of the form:

hi+1 = Aθ(xi)hi + Bθxi,

where xi ∈ Rdx , hi ∈ Rdh , Aθ : Rdx → Rdh×dh , and Bθ ∈ Rdh×dx .

Examples include Mamba (Gu et al. 2023), Mamba-2 (Dao et al.

2024), DeltaNet (Yang et al. 2024b), input-dependent

block-diagonal LRNN (Fan et al. 2024), DeltaProduct (Siems

et al. 2025), Gated DeltaNet (Yang et al. 2025), RWKV-7 (Peng

et al. 2025), HGRN-2 (Qin et al. 2024), mLSTM (Beck et al.

2024), Gated Linear Attention (Yang et al. 2024a), Gated

Random Feature Attention (Peng et al. 2021), Gated Slot

Attention (Zhang et al. 2024), TTT-Linear (Sun et al. 2025), etc.
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Examples include Mamba (Gu et al. 2023), Mamba-2 (Dao et al.

2024), DeltaNet (Yang et al. 2024b), . . .

For more details see S. Yang et al. (2024b). “Parallelizing Linear

Transformers with the Delta Rule over Sequence Length”. In:

The Thirty-eighth Annual Conference on Neural Information

Processing Systems
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Efficiency vs Expressivity

Why so many variants?

▶ Dense matrices are maximally expressive but expensive1.

▶ Diagonal matrices are cheap but not maximally expressive1.

Is there a balance?

1N. M. Cirone et al. (2024). “Theoretical Foundations of Deep Selective State-Space
Models”. In: Advances in Neural Information Processing Systems
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SLiCE Comparison

Model Parameters Recurrent Cost Parallel Cost
Maximally
Expressive

DE-LNCDEs O(d3
h) O(nd3

h) O(log(n), d3
h) Yes

D-SLiCEs O(d2
h) O(nd2

h) O(log(n), d2
h) No

DPLR-SLiCEs O(rd2
h) O(nrd2

h) O(log(n), d3
h) Yes

S–SLiCEs O(d2+ϵ
h ) O(nd2+ϵ

h ) O(log(n), d3
h) Yes

WH–SLiCEs O(d2
h) O(nd2

h) O(log(n), d3
h) Yes

BD–SLiCEs O
(

dh
∑

j b2
j

)
O

(
ndh

∑
j b2

j

)
O

(
log(n), dh

∑
j b2

j

)
Yes

Table 1: Comparison of SLiCEs on parameter count, computational

cost, and expressivity. Parallel cost is measured as O(scan depth, cost

per composition) when applying a parallel associative scan.
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Length Generalisation
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Figure 1: Length generalisation on the A5 benchmark.
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Time Series Classification
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Figure 2: Accuracy, speed, and memory footprint on the UEA-MTSCA.
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Thank you!

walkerb1@maths.ox.ac.uk
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