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Introduction
Structured linear controlled differential equations (SLiCEs) are

a novel framework for understanding RNNs of the form:
hi+1 = Ay (Xi)hi + Bgx;,

where x; € R%, h; € R%, Ap : R — R%xdr and By € Rwxdx,
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Introduction
Structured linear controlled differential equations (SLiCEs) are

a novel framework for understanding RNNs of the form:
hi+1 = Ay (Xi)hi + Bgx;,

where x; € R%, h; € R%, Ap : R — R%xdr and By € Rwxdx,
Examples include Mamba (Gu et al. 2023), Mamba-2 (Dao et al.
2024), DeltaNet (Yang et al. 2024b), input-dependent
block-diagonal LRNN (Fan et al. 2024), DeltaProduct (Siems

et al. 2025), Gated DeltaNet (Yang et al. 2025), RWKV-7 (Peng
et al. 2025), HGRN-2 (Qin et al. 2024), mLSTM (Beck et al.
2024), Gated Linear Attention (Yang et al. 2024a), Gated
Random Feature Attention (Peng et al. 2021), Gated Slot
Attention (Zhang et al. 2024), TTT-Linear (Sun et al. 2025), etc.
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Introduction
Structured linear controlled differential equations (SLiCEs) are

a novel framework for understanding RNNs of the form:
hit1 = Ap(xi)hi + Box;,

where x; € R, h; € R, Ay : R — RIxdr and By € RIwxdx,
Examples include Mamba (Gu et al. 2023), Mamba-2 (Dao et al.
2024), DeltaNet (Yang et al. 2024b), ...

For more details see S. Yang et al. (2024b). “Parallelizing Linear
Transformers with the Delta Rule over Sequence Length”. In:
The Thirty-eighth Annual Conference on Neural Information

Processing Systems
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Efficiency vs Expressivity

Why so many variants?

IN. M. Cirone et al. (2024). “Theoretical Foundations of Deep Selective State-Space
Models”. In: Advances in Neural Information Processing Systems
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Efficiency vs Expressivity

Why so many variants?

» Dense matrices are maximally expressive but expensive!.

» Diagonal matrices are cheap but not maximally expressive®.

Is there a balance?

IN. M. Cirone et al. (2024). “Theoretical Foundations of Deep Selective State-Space
Models”. In: Advances in Neural Information Processing Systems
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SLiCE Comparison

Maximall
Model Parameters Recurrent Cost Parallel Cost ax1ma' Y

Expressive
DE-LNCDEs o(d) O(nd3) O(log(n),d3) Yes
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SLiCE Comparison

Model Parameters Recurrent Cost Parallel Cost x(zi:::ilz
DE-LNCDEs o(d) O(nd3) O(log(n),d3) Yes
D-SLiCEs o(d?) O(nd?) O(log(n),d?) No
DPLR-SLiCEs (’)(rdﬁ) (’)(nrdg) O(log(n),d3) Yes
S-SLiCEs o(d2te) O(ndate) O(log(n), d3) Yes
WH-SLiCEs o(d?) O(nd2) O(log(n),d3?) Yes
BD-SLiCEs O (dh )Y bjz) o (ndh )Y ij) 0] (1og(n),dh )y bjz) Yes

Table 1: Comparison of SLiCEs on parameter count, computational
cost, and expressivity. Parallel cost is measured as O(scan depth, cost

per composition) when applying a parallel associative scan.
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Length Generalisation
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Figure 1: Length generalisation on the As benchmark.



Time Series Classification
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Figure 2: Accuracy, speed, and memory footprint on the UEA-MTSCA.
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Thank you!

walkerbl@maths.ox.ac.uk
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