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Attributions

This presentation presents and synthesizes results from:

- NOIR 2.0: Neural Signal Operated Intelligent Robots for Everyday Activities (Kim,
Wang, Cho, Hodges, 2024)

- EEG-Based Brain-Computer Interface for Robotic Assistance with User Intention
Prediction (Zhang*, Kim*, Wang*, Cho, Hodges, Tan, Wang, Hwang, Lee, Hiranaka, A,
Norcia, Fei-Fei, Wu, Under Review 2025)

- Gated Uncertainty-Aware Runtime Dual Invariants for Neural Signal-Controlled
Robotics (Kim, Parker Jones, 2025)

- GUARDIAN: Gated Uncertainty-Aware Runtime Dual Invariants for EEG-Controlled
Agents (Kim, Parker Jones, 2026)
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The ways humans communicate with robots OXFORD

Operator intervenes by
moving phone

Teleoperation devices
Gesture
Gaze
Facial expression
Language
Brain signals?

Operator monitors policy
with video stream

Mandlekar et al., 2018; Aronson et al., 2021; Cui et al., 2021; Waldherr et al., 2000
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Using brain signals to control a robot
to make tea (4x)

*Brain decoding wait period is omitted
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Neural Signal Operated Intelligent Robots OXFORD

Participant’s brain signals
are recorded while they
watch the robot



Neural Signal Operated Intelligent Robots

“Pick up
the bottle”
Participant’s brain signals Machine learning
are recorded while they algorithms infer human
watch the robot intention and evaluation
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Neural Signal Operated Intelligent Robots OXFORD

“Pickup >
the bottle”
Participant’s brain signals Machine learning Intelligent robots with basic
are recorded while they algorithms infer human visuomotor skills learns to
watch the robot intention and evaluation accomplish human goals
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What'’s unique about this BRI generation? OXFORD

* “Pickup ™™ "
the bottle” Sl A
@ @ Pick (x, Y, z) Place (x,, z)
Participant’s brain signals Machine learning Intelligent robots with basic
are recorded while they algorithms infer human visuomotor skills learns to
watch the robot intention and evaluation accomplish human goals
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What'’s unique about this BRI generation? OXFORD

* “Pickup *
the bottle”
Participant’s brain signals Machine learning Intelligent robots with basic
are recorded while they algorithms infer human visuomotor skills learns to
watch the robot iIntention and evaluation accomplish human goals



Environment Display & EEG Recordings

e
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How do we decode intent from the human brain? OXFORD

Human goal decoding Robots with primitive skills
+ Human goal prediction
—— e
object? & _f 4

to interact?

Where to interact? Q % _
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NOIRv1 System Performance
Task horizon: 4-15 skills

Average attempts to succeed: 1.8
Average task completion time: 20.3 minutes

Human-decision and decoding time: ~80%




NOIRv2 System Performance OXFORD

Time (min.) Human Time (min.)
Task Name NOIR NOIR 2.0 NOIR 2.0+Learning NOIR NOIR 2.0 NOIR 2.0+Learning
WipeSpill 1474 9.12 5.46 11.65 5.12 3.15
OpenBasket 1590 6.79 5.80 13.04 2.60 1.52
PourTea 13.53 8.90 12.60 11.25 6.55 7.87

Avg. Time Reduced (%) - 43.82 45.97 - 60.30 65.11
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NOIRv2 New Features: Brain Decoding OXFORD

« Faster and more accurate object and skill decoding
* Object selection: 81% > 88%

« Skill selection: 42% =2 61%
« Continuous cursor control for skill parameter selection

Start Point
End Point

NOIRv1 NOIRv2
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NOIRv2 New Features: Robot Learning OXFORD

 NOIRv1 used few-shot imitation learning for object and skill selection
(requires ~15 demos)
 NOIRvV2 uses in-context learning w/ GPT-40 (requires 1 demo)

Task + First + State
description demo information Example Prompt (GPT-40)
GPT-40 “ Given the past behavior
of this user and task goal,
‘ GPT-4
o + bed what will she/he likely do i { )
now?”
m Where (DINOv2)
DINOv2
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Inherent Challenges: Neural Signal Control OXFORD

« Compounding feedback loop
 Verification gap
* Vulnerable user population

I\~ O {C}
> N { )
= A
Noisy Miscalibrated Erroneous User response
brain signal decoder action (Panic)

t— Feedback into system <—J
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GUARDIAN: Runtime Safety Checking OXFORD

* Physiological Invariants

 Verify reliability of input signal before processing
* Logical Invariants

 Verify physical validity of the intended action

Decoder Val. Acc. Test Acc. Calib. (ECE) Safety Rate Interventions Latency (ms)
EEGNet 58.2% 46.0% 0.223 94.2% 52.3% 0.82
Riemannian 58.7% 30.0% 0.410 95.8% 68.1% 0.91
Light CNN 54.3% 28.0% 0.316 96.3% 70.4% 0.79
Realilntent 51.2% 27.0% 0.287 97.0% 71.2% 0.73
Mean 55.6% 32.8% 0.309 95.8% (> 90%) 65.5% 0.81 (<1 ms)

*Safety Rate = Correct Interventions + Correct Executions / Total Trials 16
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Discussion OXFORD

 Interpretable primitives
Action set for natural control
Interpretable intent-to-action
Shared autonomy support

JU 1V

o Adaptive safety

Calibration-independent invariants
Consistency preservation
Multi-level thresholding

o Practical deployment

Sub-millisecond overhead on any decoder
Audit logs for compliance (regulatory framework compatibility)
PDDL-compatible toolchain for robotic control
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Thank you

Contact: tasha.kim@eng.ox.ac.uk
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