Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

The Rosalind Franklin Institute, a new national centre for interdisciplinary science, announces its first capital investment today.

The namesake of the institute, the pioneering X-ray crystallographer Rosalind Franklin, was one of the key figures in the discovery of the structure of DNA, and used a technique with roots in physics and technology to transform life science. The Institute will follow in this spirit, developing unique new techniques and tools based on advances in engineering and physical science and applying them for the first time to biological problems.

£1.55m has been awarded through the Institute to fund the development of a time-resolved high-resolution transmission electron microscope, the first stage of a £10m project to build a ground breaking microscope which will be the first of its kind in the world. The project is led by Professor Angus Kirkland, Oxford University, and leader of the Correlated Imaging theme at The Rosalind Franklin Institute.

This follows the Government’s announcement in February 2017 confirming that the Rosalind Franklin Institute has been funded through £103 million investment through its modern Industrial Strategy.  Research and development is at the heart of the Industrial Strategy, and the Rosalind Franklin Institute is building on the UK’s world-leading reputation in these fields and will effectively bring together academia and industry.

Universities and Science Minister, Sam Gyimah, said:

“As part of our Industrial Strategy we committed a £100 million to establish the Rosalind Franklin Institute.  This first grant will develop just what the Institute and our Industrial Strategy seeks to achieve - world-leading science that can help create the next generation of life-saving drugs.

“Through our Industrial Strategy, we are also supporting vital research and innovation that will help create the high value, high skilled jobs that will make Britain fit for the future.”

JEOL, the manufacturer of the equipment for this first stage, and global leaders in the manufacture of electron microscopes, are making a significant investment in this research partnership with the Institute. Shaun Quill, MD of JEOL (U.K.) Ltd, the supplier of the equipment, which will be developed by JEOL Ltd in Tokyo, says ‘This microscope will be one of the most advanced electron microscopes in the world, linking the technology of electron microscopy across physical and life sciences. Electron Microscopy has made enormous progress in the last decade and it is great to see the UK investing in the forefront of future developments.’

The project will significantly advance the electron microscopy for life sciences within the UK, a technique which allows visualisation of structures at near atomic scale in time and space.  The ability to quickly image structures before they damage will allow researchers to understand how drugs interact with their targets and enable understanding of many biological processes in exquisite detail.

Professor Kirkland says ‘This equipment from JEOL will be unique the UK, and will enable the development of a microscope which will be the first of its kind. We are excited to be working on key challenges in imaging, which will bring disruptive technology to both biologists and physical scientists.’

The equipment produced will be located in the Rosalind Franklin Institute hub at Harwell, planned to open in 2020, which will house a portfolio of scientific equipment, enabling transformative breakthroughs in life science through interdisciplinary research. Until then, activities will take place within a network of universities and research centres across the UK.

Dr Judy Kim, a Principal Staff Scientist from The Department of Materials at Oxford University, who will lead the technological delivery of the equipment says ‘The equipment will take around  two years to deliver, but we are already very excited about the new types of experiments we will be able to carry out. We can expect research on everything from the effects of chemotherapy to malaria treatments and understanding the step-by-step evolution of these processes in time.’

One of the key characteristics of the Rosalind Franklin Institute will be close partnership between researchers from different disciplines and between academia and industry. Professor Kirkland leads the Correlated Imaging theme for the Institute, working towards the imaging of complex biological structures ranging from the centimetre to 10 picometer (ten trillionths of a meter, or 10/1,000,000,000,000m) scale. The ability to understand the same structure across many length scales will bring paradigm-changing advances in our understanding of diseases and drug development.

Similar stories

£100 million donation from Ineos to create new institute to fight antimicrobial resistance

Chemistry Funding Medical science Zoology

Ineos, one of the world’s largest manufacturing companies, and the University of Oxford are launching a new world-leading institute to combat the growing global issue of antimicrobial resistance (AMR), which currently causes an estimated 1.5 million excess deaths each year.

Quantum Technologies for Fundamental Physics: exciting science awaits

Funding Physics Research

Oxford’s Department of Physics is playing a key role in three of the seven quantum projects supported by UK Research and Innovation (UKRI).

UK population movement falls 59%, compared to -89% in March - COVID-19 Monitor

COVID-19 Engineering Maths Research

The latest data from Oxford’s COVID-19 Impact Monitor shows the January lockdown has, so far, had one third less national impact on movement than the March shutdown. The figures demonstrate that some regions are still moving at more than 50% of pre-pandemic levels, despite the tough restrictions and calls for people to remain at home.

COVID-19 transmission chains in the UK accurately traced using genomic epidemiology

COVID-19 Research Zoology

A team of scientists, led by researchers from the Universities of Oxford and Edinburgh, has analysed the first wave of the COVID-19 outbreak in the UK and produced the most fine-scaled and comprehensive genomic analysis of transmission of any epidemic to date.

Light-carrying chips advance machine learning

Materials science Research

A team of international scientists has demonstrated an initial prototype of a photonic processor using tiny rays of light confined inside silicon chips that can process information much more rapidly than electronic chips and also in parallel - something traditional chips are incapable of doing.

Professor Martin Booth receives ERC Proof of Concept grant

Engineering Funding

The project will develop the commercial potential of the novel imaging technology developed by Prof Booth, adaptive optical microscopy.

Similar stories

£100 million donation from Ineos to create new institute to fight antimicrobial resistance

Chemistry Funding Medical science Zoology

Ineos, one of the world’s largest manufacturing companies, and the University of Oxford are launching a new world-leading institute to combat the growing global issue of antimicrobial resistance (AMR), which currently causes an estimated 1.5 million excess deaths each year.

Quantum Technologies for Fundamental Physics: exciting science awaits

Funding Physics Research

Oxford’s Department of Physics is playing a key role in three of the seven quantum projects supported by UK Research and Innovation (UKRI).

UK population movement falls 59%, compared to -89% in March - COVID-19 Monitor

COVID-19 Engineering Maths Research

The latest data from Oxford’s COVID-19 Impact Monitor shows the January lockdown has, so far, had one third less national impact on movement than the March shutdown. The figures demonstrate that some regions are still moving at more than 50% of pre-pandemic levels, despite the tough restrictions and calls for people to remain at home.

COVID-19 transmission chains in the UK accurately traced using genomic epidemiology

COVID-19 Research Zoology

A team of scientists, led by researchers from the Universities of Oxford and Edinburgh, has analysed the first wave of the COVID-19 outbreak in the UK and produced the most fine-scaled and comprehensive genomic analysis of transmission of any epidemic to date.

Light-carrying chips advance machine learning

Materials science Research

A team of international scientists has demonstrated an initial prototype of a photonic processor using tiny rays of light confined inside silicon chips that can process information much more rapidly than electronic chips and also in parallel - something traditional chips are incapable of doing.

Professor Martin Booth receives ERC Proof of Concept grant

Engineering Funding

The project will develop the commercial potential of the novel imaging technology developed by Prof Booth, adaptive optical microscopy.