Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Researchers at the University of Oxford have proposed an evolutionary framework to understand why microbes living in the gut affect the brain and behaviour, published in Nature Reviews Microbiology.

Artist's impression of bacteria © Shutterstock

Katerina Johnson (Department of Experimental Psychology) and Kevin Foster (Department of Zoology) assessed data from studies on the gut-brain axis to suggest how ‘that gut feeling’ evolved in their study published in Nature Reviews Microbiology.

Research has shown that gut bacteria (especially species belonging to Lactobacillus and Bifidobacterium) can influence social behaviour, anxiety, stress and depressive-like behaviour. Katerina explained: “We know there are numerous possible mechanisms, including communication via the vagus nerve (major nerve linking the gut and brain), the immune system and hormonal changes, as well as the production of neuroactive chemicals by gut microbes. But why should we expect gut bacteria to affect behaviour at all?” In their paper, Johnson and Foster consider the evolutionary pressures that may have led to ‘that gut feeling’.

One theory gaining momentum is that members of the gut microbiome actively manipulate our behaviour for their own benefit. For instance, gut bacteria might change our behaviour in ways that make us more sociable to increase their likelihood of transmission to new hosts. Indeed, it is intriguing that numerous species of gut bacteria can produce chemicals of identical structure to our brain’s own neurotransmitters (or their precursors). However, in light of evolutionary theory, the authors suggest this scenario, that our brains are manipulated by our microbes, is very unlikely given the immense diversity of microbial species and strains inhabiting the gut.

Professor Foster explained: 'Any extra energetic cost invested by bacteria producing a neuroactive chemical to manipulate host behaviour would make it very vulnerable to being outcompeted by other microbes not making this additional investment. The conditions favouring manipulation appear rarely satisfied by the genetically diverse ecosystem of the mammalian microbiome.'

Katerina commented: 'Rather than viewing our microbial companions as puppeteers manipulating our behaviour, instead we suggest that the behavioural effects of gut microbes are more likely a result of natural selection on microbes to grow and compete in the gut, and natural selection on hosts to depend on their microbes. Microbial growth gives rise to metabolic by-products such as short-chain fatty acids known to affect brain function and microbial metabolites can also interact with our immune response.

'In addition, our physiology may have adapted to make use of our associated microbes. Similar to the ‘hygiene hypothesis’, which posits that an absence of microbes impairs immune system development, we propose that we may have evolved to depend on our microbes for normal brain function, such that a change in our gut microbiome could have effects on behaviour.'

Johnson and Foster suggest that an understanding of the evolution of gut-brain communication may help us to effectively engineer this microbial ecosystem with potential benefits for mental health and well-being.

Story courtesy of the University of Oxford News Office.

Similar stories

Global Jet Watch: discovery of jets in classical novae

Scientists at the University of Oxford have discovered that classical nova explosions are accompanied by the ejection of jets of oppositely-directed hot gas and plasma, and that this persists for years following the nova eruption. Previously, such jets had only been encountered emanating from very different systems such as black holes or newly collapsing stars.

Green light for European Space Agency mission to Venus

Oxford University scientists will play a leading role in a new mission to study the geology and atmosphere of Venus, our neighbouring planet, helping determine whether it was once habitable – and why Earth became the only known planet that can sustain life.

Averting an antibiotics apocalypse: major funding announced to tackle resistance to antibiotics

A cross-disciplinary team from the Universities of Oxford, Ulster and UCL have announced major funding from EPSRC to tackle the growing challenge of Antimicrobial Resistance (AMR).

Subatomic particle seen changing to antiparticle and back for the first time

Physicists have proved that a subatomic particle can switch into its antiparticle alter-ego and back again. An extraordinarily precise measurement made by Oxford researchers using the LHCb experiment at CERN has provided the first evidence that charm mesons can change into their antiparticle and back again.

Science Blog: The wet market sources of Covid-19: bats and pangolins have an alibi

By David Macdonald, Department of Zoology. The finger of blame has been pointed at wildlife trade in the wet markets of Wuhan, Hubei, China, where this Covid-19 outbreak seems to have originated. But could bats and pangolins really be responsible?

COVID-19 lockdowns significantly reduced transmission of invasive bacterial diseases

A new international study involving University of Oxford researchers has conclusively demonstrated that national lockdowns and public health campaigns introduced at the start of the pandemic have reduced the transmission of bacteria that cause respiratory infections.