Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Using detailed computer simulations, Oxford University research has revealed why falcons dive at their prey using the same steering laws as man-made missiles.

 

Published today in PLOS Computational Biology, researchers from Oxford’s Department of Zoology use computer simulations of peregrine falcon attacks to show that the extreme speeds reached during dives from high altitudes enhance the raptors’ ability to execute manoeuvres needed to successfully attack agile prey that would otherwise escape.

Professor Graham Taylor and postdoctoral student Robin Mills, alongside colleagues from the University of Groningen, built a physics-based computer simulation of bird flight that pits falcons against prey. The team had previously shown that falcons attack their prey using the same steering rules as man-made missiles.

The simulation incorporated the aerodynamics of bird flight, how birds flap and tuck their wings, how falcons perceive their prey and react to it with delay and how falcons target their prey like a missile. It showed that high-speed dives enable peregrines to manoeuvre faster, producing much higher aerodynamic forces, thereby maximising their chance of seizing agile prey.

In addition the simulation showed that high-speed dives require very precisely tuned steering for a falcon to attack successfully, revealing that the stoop is a highly specialist hunting technique. The research team found that optimal tuning of the mathematical laws that control steering in the simulation corresponded closely to measurements of steering for real falcons.

The team is now extending its simulation to explore other unique and specialised attack strategies as well as escape tactics employed by different raptor species.

‘Ultimately,’ says Mills, ‘we aim to understand the arms race between aerial predators and their prey that has led raptors to become some of the fastest and most agile animals on Earth.’

 

Image credit: Robin Mills.
Image credit: Robin Mills.

The image is a snapshot of the simulation in action. A stooping peregrine falcon (blue trajectory) is about to intercept a common starling (green trajectory) that manoeuvres erratically to evade them.

 

Similar stories

£100 million donation from Ineos to create new institute to fight antimicrobial resistance

Chemistry Funding Medical science Zoology

Ineos, one of the world’s largest manufacturing companies, and the University of Oxford are launching a new world-leading institute to combat the growing global issue of antimicrobial resistance (AMR), which currently causes an estimated 1.5 million excess deaths each year.

COVID-19 transmission chains in the UK accurately traced using genomic epidemiology

COVID-19 Research Zoology

A team of scientists, led by researchers from the Universities of Oxford and Edinburgh, has analysed the first wave of the COVID-19 outbreak in the UK and produced the most fine-scaled and comprehensive genomic analysis of transmission of any epidemic to date.

Cecil the lion’s legacy: five years on

Zoology

Lion numbers have disappeared from 92% of their historical range. The death of Cecil the lion in 2015 and the resulting global outcry brought this sobering fact into sharp focus.

Spotting elephants from space: a satellite revolution

Engineering Research Zoology

Using the highest resolution satellite imagery currently available, researchers at the University of Oxford Wildlife Conservation Research Unit and Machine Learning Research Group have detected elephants from space with comparable accuracy to human detection capabilities.

Aliens (or at least intelligent ones) are rare

Research Zoology

In a collaboration between the Department of Zoology’s Mathematical Ecology Research Group and the Future of Humanity Institute, researchers created a mathematical model to simulate the likelihood of the emergence of intelligent observers.

Eight Oxford researchers, including five from MPLS, awarded major European Research Council funding

Chemistry Engineering Funding Plant sciences Zoology

European Research Council grants worth more than €16.3 million have been awarded to University of Oxford researchers for a range of cutting-edge projects.

Similar stories

£100 million donation from Ineos to create new institute to fight antimicrobial resistance

Chemistry Funding Medical science Zoology

Ineos, one of the world’s largest manufacturing companies, and the University of Oxford are launching a new world-leading institute to combat the growing global issue of antimicrobial resistance (AMR), which currently causes an estimated 1.5 million excess deaths each year.

COVID-19 transmission chains in the UK accurately traced using genomic epidemiology

COVID-19 Research Zoology

A team of scientists, led by researchers from the Universities of Oxford and Edinburgh, has analysed the first wave of the COVID-19 outbreak in the UK and produced the most fine-scaled and comprehensive genomic analysis of transmission of any epidemic to date.

Cecil the lion’s legacy: five years on

Zoology

Lion numbers have disappeared from 92% of their historical range. The death of Cecil the lion in 2015 and the resulting global outcry brought this sobering fact into sharp focus.

Spotting elephants from space: a satellite revolution

Engineering Research Zoology

Using the highest resolution satellite imagery currently available, researchers at the University of Oxford Wildlife Conservation Research Unit and Machine Learning Research Group have detected elephants from space with comparable accuracy to human detection capabilities.

Aliens (or at least intelligent ones) are rare

Research Zoology

In a collaboration between the Department of Zoology’s Mathematical Ecology Research Group and the Future of Humanity Institute, researchers created a mathematical model to simulate the likelihood of the emergence of intelligent observers.

Eight Oxford researchers, including five from MPLS, awarded major European Research Council funding

Chemistry Engineering Funding Plant sciences Zoology

European Research Council grants worth more than €16.3 million have been awarded to University of Oxford researchers for a range of cutting-edge projects.