Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Researchers have developed a new technique to analyse cell membrane proteins in situ which could revolutionise the way in which we study diseases, such as cancer, metabolic and heart diseases.

Artist's impression of a membrane protein structure © Oxford University
Load More

Similar stories

Green light for European Space Agency mission to Venus

Oxford University scientists will play a leading role in a new mission to study the geology and atmosphere of Venus, our neighbouring planet, helping determine whether it was once habitable – and why Earth became the only known planet that can sustain life.

Averting an antibiotics apocalypse: major funding announced to tackle resistance to antibiotics

A cross-disciplinary team from the Universities of Oxford, Ulster and UCL have announced major funding from EPSRC, part of UK Research and Innovation (UKRI), to tackle the growing challenge of Antimicrobial Resistance (AMR).

Subatomic particle seen changing to antiparticle and back for the first time

Physicists have proved that a subatomic particle can switch into its antiparticle alter-ego and back again. An extraordinarily precise measurement made by Oxford researchers using the LHCb experiment at CERN has provided the first evidence that charm mesons can change into their antiparticle and back again.

Science Blog: The wet market sources of Covid-19: bats and pangolins have an alibi

By David Macdonald, Department of Zoology. The finger of blame has been pointed at wildlife trade in the wet markets of Wuhan, Hubei, China, where this Covid-19 outbreak seems to have originated. But could bats and pangolins really be responsible?

COVID-19 lockdowns significantly reduced transmission of invasive bacterial diseases

A new international study involving University of Oxford researchers has conclusively demonstrated that national lockdowns and public health campaigns introduced at the start of the pandemic have reduced the transmission of bacteria that cause respiratory infections.

SARS-CoV-2 naming system given open platform to harness international scientific collaboration

Researchers at the Universities of Oxford and Edinburgh have announced the formalisation of the Pango Network, an international team of experts to oversee the identification and naming of different lineages of SARS-CoV-2 virus.

Similar stories

Green light for European Space Agency mission to Venus

Oxford University scientists will play a leading role in a new mission to study the geology and atmosphere of Venus, our neighbouring planet, helping determine whether it was once habitable – and why Earth became the only known planet that can sustain life.

Averting an antibiotics apocalypse: major funding announced to tackle resistance to antibiotics

A cross-disciplinary team from the Universities of Oxford, Ulster and UCL have announced major funding from EPSRC, part of UK Research and Innovation (UKRI), to tackle the growing challenge of Antimicrobial Resistance (AMR).

Subatomic particle seen changing to antiparticle and back for the first time

Physicists have proved that a subatomic particle can switch into its antiparticle alter-ego and back again. An extraordinarily precise measurement made by Oxford researchers using the LHCb experiment at CERN has provided the first evidence that charm mesons can change into their antiparticle and back again.

Science Blog: The wet market sources of Covid-19: bats and pangolins have an alibi

By David Macdonald, Department of Zoology. The finger of blame has been pointed at wildlife trade in the wet markets of Wuhan, Hubei, China, where this Covid-19 outbreak seems to have originated. But could bats and pangolins really be responsible?

COVID-19 lockdowns significantly reduced transmission of invasive bacterial diseases

A new international study involving University of Oxford researchers has conclusively demonstrated that national lockdowns and public health campaigns introduced at the start of the pandemic have reduced the transmission of bacteria that cause respiratory infections.

SARS-CoV-2 naming system given open platform to harness international scientific collaboration

Researchers at the Universities of Oxford and Edinburgh have announced the formalisation of the Pango Network, an international team of experts to oversee the identification and naming of different lineages of SARS-CoV-2 virus.