Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

OxSyBio, an Oxford University biotech spinout company developing 3D printer technology capable of printing biological materials with a diverse range of therapeutic purposes, has secured £10m in Series A financing from Woodford Investment Management alongside new and existing backers.

A 3D printed droplet © Oxford University/G Villar

OxSyBio has a unique 3D printing platform which enables it to assemble the building blocks of life. The synthetic biology company's ultimate ambition is to fabricate therapeutic tissues for patients using living cells or non-living 'artificial' cells, or hybrid materials.

These tissues have the potential to revolutionise the growing field of regenerative medicine, allowing for the literal printing of new tissues that can be used to repair or replace parts of the body damaged through disease or injury.

OxSyBio, which is underpinned by research conducted in the lab of Professor Hagan Bayley, the founding academic behind Oxford Nanopore Technologies, was spun out from Oxford University’s Department of Chemistry by the institution’s innovation arm Oxford University Innovation in 2014.

The Series A – the name typically given to a company's first significant round of venture capital financing – was led by Woodford Investment Management, with participation from IP Group plc and Parkwalk Advisors Ltd. The round, part of which is subject to the achievement of milestones, builds on the previous £1m seed funding, bringing OxSyBio's total fundraising to date to £11m. The latest investment will enable the company to further develop its artificial cell platform and 3D bioprinting technology to develop disruptive products that harness the power of biology for impact in medicine.

Dr Hadrian Green, CEO of OxSyBio, said: 'Biological functions are difficult to create using electrical or mechanical devices, therefore harnessing the power of biological materials in non-living devices will be highly disruptive. This investment is testament to the power of the original ideas and the hard work of our Chief Technology Officer Sam Olof, the OxSyBio team and the founding lab to turn research into reality. OxSyBio wishes to pay tribute to Oxford University and the unique culture of patient capital, pioneered by Neil Woodford and IP Group, which is instrumental to delivering long-term transformational technologies.'

Moray Wright, Chief Executive Officer at Parkwalk Advisors, said: 'The 3D printing of tissues from living cells in high-throughput formats is already proving interesting to academic and pharmaceutical research teams, with massive potential impact right across the board. The concept of artificial cells has had a long history, but with OxSyBio's platform technology, the concept is becoming a reality.'

Professor Hagan Bayley added: 'This deal provides the long-term capital required to deliver our ambition of building affordable tissues for patients. The company has already made important strides in translating this technology into a real world product, and we look forward to continuing our close research collaboration.'

Story courtesy of the University of Oxford News Office

Similar stories

Chemistry researchers to develop novel energy and bioelectronic materials with new EPSRC Programme Grant

Professors Andrew Goodwin and Iain McCullogh in the Department of Chemistry are part of the team of 10 researchers at the Universities of Oxford and Cambridge that will be at the forefront of work that on a new generation of soft functional materials.

Seven MPLS researchers elected to the Royal Society

In all, eight scientists from the University of Oxford have joined the Royal Society as Fellows. All but one are from departments in MPLS Division.

New Biochemistry Building renamed the Dorothy Crowfoot Hodgkin Building

Dorothy Crowfoot Hodgkin made key contributions to Medical Sciences and was the third woman to win the Nobel Prize in Chemistry.

Oxford Chemistry launches the inaugural Jamie Ferguson Chemistry Innovation Award

This award has been created as a legacy to Dr Jamie Ferguson of Oxford University Innovation, who tragically died in August 2020 after succumbing to COVID-19.

Sapphire fibre developed by Oxford engineering researchers could enable cleaner energy and air travel

As part of an EPSRC-funded cross-sector collaboration involving Rolls-Royce, researchers in the Department of Engineering Science have developed a sapphire fibre sensor that can tolerate extreme temperatures and has the potential to enable significant efficiency and emissions reduction improvements in aerospace and power generation.

Oxford joins UK consortium to build auto-calibrated quantum control system

Funded by Innovate UK, the £6.8M project will apply machine learning techniques to find fast, automated, and scalable ways to calibrate quantum computers. The aim is to build a system capable of controlling hundreds of qubits simultaneously across different types of quantum hardware.