Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.
Artist's impression of DNA © By Pixabay - File:Dna-163466.jpg, CC0, https://commons.wikimedia.org/w/index.php?curid=57133011

A fundamental problem for biology is explaining how life evolved. How did we get from simple chemical reactions in the prebiotic soup, to animals and plants?

A key step in explaining life is that about 4 billion years ago, all we had was just the simplest molecules that could replicate themselves. These are called ‘replicators’ - the earliest form of life, so simple that that they are almost chemistry rather than biology. Somehow they joined together to cooperate to form more complex things. This was the basis of the genome that builds us today.

But why did they join together? Why did they cooperate? Any cooperation could be easily exploited by ‘cheating’ replicators that didn’t cooperate. Did it require special environmental conditions?

Today, researchers from the Department of Zoology at the University of Oxford show, in Nature Ecology & Evolution, that replicators could have solved this problem themselves. If some replicators were a bit cooperative, and some were a bit ‘sticky’ then this would lead to clumps of cooperating replicators that would evolve to become more and more cooperative, eventually producing simple genomes, and then eventually, all of life that we see around us today.

Lead researcher, Samuel Levin, at the Department of Zoology, Oxford, said: ‘As humans, we care about how things start. Our results help to solve some of that puzzle and are also relevant for trying to figure out how common we might expect complex life in the universe to be: how easy are these early steps?

‘I was surprised by the jump in cooperation you get when you allow coevolution — it was higher than I expected. There seems to be some sort of cyclical feedback.’

Co-author, Professor Stuart West, at the Department of Zoology, Oxford, said: ‘Our results show us that the same issues that we think about today, with humans (cooperating and cheating) can help explain how life evolved. Life evolved as societies of cooperating replicators / molecules.’

Authors tested their hypothesis using mathematical models. They wrote equations which distilled down evolution in early life, and then added stickiness and cooperation to see what happened. They showed, mathematically, that more complex life could evolve only when stickiness and cooperation were allowed to coevolve at the same time.

The study, titled ‘The social coevolution hypothesis for the origin of enzymatic cooperation’, is published in Nature Ecology & Evolution

Story courtesy of the University of Oxford News Office

Similar stories

Green light for European Space Agency mission to Venus

Oxford University scientists will play a leading role in a new mission to study the geology and atmosphere of Venus, our neighbouring planet, helping determine whether it was once habitable – and why Earth became the only known planet that can sustain life.

Subatomic particle seen changing to antiparticle and back for the first time

Physicists have proved that a subatomic particle can switch into its antiparticle alter-ego and back again. An extraordinarily precise measurement made by Oxford researchers using the LHCb experiment at CERN has provided the first evidence that charm mesons can change into their antiparticle and back again.

Science Blog: The wet market sources of Covid-19: bats and pangolins have an alibi

By David Macdonald, Department of Zoology. The finger of blame has been pointed at wildlife trade in the wet markets of Wuhan, Hubei, China, where this Covid-19 outbreak seems to have originated. But could bats and pangolins really be responsible?

COVID-19 lockdowns significantly reduced transmission of invasive bacterial diseases

A new international study involving University of Oxford researchers has conclusively demonstrated that national lockdowns and public health campaigns introduced at the start of the pandemic have reduced the transmission of bacteria that cause respiratory infections.

SARS-CoV-2 naming system given open platform to harness international scientific collaboration

Researchers at the Universities of Oxford and Edinburgh have announced the formalisation of the Pango Network, an international team of experts to oversee the identification and naming of different lineages of SARS-CoV-2 virus.

Floating ocean plastic can get a boost to its wave-induced transport because of its size

Plastic pollution and other ocean debris are a complex global environmental problem. Every year, ten million tonnes of plastic are estimated to be mismanaged, resulting in entry into the ocean, of which half will float initially. Yet, only 0.3 million tonnes of plastic can be found floating on the surface of the ocean. Where has the rest of the plastic gone?

Similar stories

Green light for European Space Agency mission to Venus

Oxford University scientists will play a leading role in a new mission to study the geology and atmosphere of Venus, our neighbouring planet, helping determine whether it was once habitable – and why Earth became the only known planet that can sustain life.

Subatomic particle seen changing to antiparticle and back for the first time

Physicists have proved that a subatomic particle can switch into its antiparticle alter-ego and back again. An extraordinarily precise measurement made by Oxford researchers using the LHCb experiment at CERN has provided the first evidence that charm mesons can change into their antiparticle and back again.

Science Blog: The wet market sources of Covid-19: bats and pangolins have an alibi

By David Macdonald, Department of Zoology. The finger of blame has been pointed at wildlife trade in the wet markets of Wuhan, Hubei, China, where this Covid-19 outbreak seems to have originated. But could bats and pangolins really be responsible?

COVID-19 lockdowns significantly reduced transmission of invasive bacterial diseases

A new international study involving University of Oxford researchers has conclusively demonstrated that national lockdowns and public health campaigns introduced at the start of the pandemic have reduced the transmission of bacteria that cause respiratory infections.

SARS-CoV-2 naming system given open platform to harness international scientific collaboration

Researchers at the Universities of Oxford and Edinburgh have announced the formalisation of the Pango Network, an international team of experts to oversee the identification and naming of different lineages of SARS-CoV-2 virus.

Floating ocean plastic can get a boost to its wave-induced transport because of its size

Plastic pollution and other ocean debris are a complex global environmental problem. Every year, ten million tonnes of plastic are estimated to be mismanaged, resulting in entry into the ocean, of which half will float initially. Yet, only 0.3 million tonnes of plastic can be found floating on the surface of the ocean. Where has the rest of the plastic gone?