Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Research carried out by the Department of Engineering Science, Queen Mary University of London and Nanyang Technological University (Singapore), published recently in Advanced Functional Materials, aims to integrate the benefits of self-assembly with nanoscale precision - building structures by assembling molecules like Lego pieces - with novel bio-ink printing techniques.

This process opens up possibilities for building complex biological structures with cells embedded in an ink which recreates their native environment, such as body tissue, and therefore recreating biological scenarios or tissues with molecular control.

The approach uses a self-assembling ink that can chemically and structurally resemble the cells’ natural surrounding environment. This capability has implications for tissue engineering, drug screening methods, and regenerative medicine as it introduces the potential to recreate biological scenarios or tissues with molecular control.

The technique can be used to fabricate complex macroscopic structures, using cells and biomolecules normally found in natural tissues, so that they resemble naturally occurring structures. The applications of a technique which can create complex patterns that mimic naturally occurring forms are varied.

Biological constructs resembling specific cell environments and tissues can be designed and created for use in different fields such as tissue engineering, to test drugs in a more efficient manner, and regenerative medicine. Complex biological scenarios (such as niches where cancer grows and where the immune cells interact with other cells) can be constructed and used to study a variety of diseases.

Previous investigations into the use of self-assembling materials as inks for bioprinting have focused on self-assembling peptides that can gel over dry surfaces, maintaining their shape and ability to encapsulate cells.

This new study presents a number of advantages over previous techniques, including being able to incorporate multiple macromolecules, recreating the way these molecules are presented in in vivo. Furthermore, the study opens new opportunities in biofabrication by enabling for the first time the possibility to control biomolecular and physical elements at the molecular, nano and microscale.

Link to the full paper: Hydrodynamically Guided Hierarchical Self-Assembly of Peptide–Protein Bioinks, Advanced Functional Materials, February 2018

This work was supported by the ERC Starting Grant (STROFUNSCAFF), the FP7-PEOPLE-2013-CIG Biomorph, the Royal Society, and the European Space Agency (Drop My Thesis program, 2016).

Story courtesy of the Department of Engineering Science

Similar stories

Quantum Technologies for Fundamental Physics: exciting science awaits

Funding Physics Research

Oxford’s Department of Physics is playing a key role in three of the seven quantum projects supported by UK Research and Innovation (UKRI).

UK population movement falls 59%, compared to -89% in March - COVID-19 Monitor

COVID-19 Engineering Maths Research

The latest data from Oxford’s COVID-19 Impact Monitor shows the January lockdown has, so far, had one third less national impact on movement than the March shutdown. The figures demonstrate that some regions are still moving at more than 50% of pre-pandemic levels, despite the tough restrictions and calls for people to remain at home.

COVID-19 transmission chains in the UK accurately traced using genomic epidemiology

COVID-19 Research Zoology

A team of scientists, led by researchers from the Universities of Oxford and Edinburgh, has analysed the first wave of the COVID-19 outbreak in the UK and produced the most fine-scaled and comprehensive genomic analysis of transmission of any epidemic to date.

Light-carrying chips advance machine learning

Materials science Research

A team of international scientists has demonstrated an initial prototype of a photonic processor using tiny rays of light confined inside silicon chips that can process information much more rapidly than electronic chips and also in parallel - something traditional chips are incapable of doing.

Professor Martin Booth receives ERC Proof of Concept grant

Engineering Funding

The project will develop the commercial potential of the novel imaging technology developed by Prof Booth, adaptive optical microscopy.

Similar stories

Quantum Technologies for Fundamental Physics: exciting science awaits

Funding Physics Research

Oxford’s Department of Physics is playing a key role in three of the seven quantum projects supported by UK Research and Innovation (UKRI).

UK population movement falls 59%, compared to -89% in March - COVID-19 Monitor

COVID-19 Engineering Maths Research

The latest data from Oxford’s COVID-19 Impact Monitor shows the January lockdown has, so far, had one third less national impact on movement than the March shutdown. The figures demonstrate that some regions are still moving at more than 50% of pre-pandemic levels, despite the tough restrictions and calls for people to remain at home.

COVID-19 transmission chains in the UK accurately traced using genomic epidemiology

COVID-19 Research Zoology

A team of scientists, led by researchers from the Universities of Oxford and Edinburgh, has analysed the first wave of the COVID-19 outbreak in the UK and produced the most fine-scaled and comprehensive genomic analysis of transmission of any epidemic to date.

Light-carrying chips advance machine learning

Materials science Research

A team of international scientists has demonstrated an initial prototype of a photonic processor using tiny rays of light confined inside silicon chips that can process information much more rapidly than electronic chips and also in parallel - something traditional chips are incapable of doing.

Professor Martin Booth receives ERC Proof of Concept grant

Engineering Funding

The project will develop the commercial potential of the novel imaging technology developed by Prof Booth, adaptive optical microscopy.