Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Research carried out by the Department of Engineering Science, Queen Mary University of London and Nanyang Technological University (Singapore), published recently in Advanced Functional Materials, aims to integrate the benefits of self-assembly with nanoscale precision - building structures by assembling molecules like Lego pieces - with novel bio-ink printing techniques.

Images of the peptide-protein bio-ink technique

This process opens up possibilities for building complex biological structures with cells embedded in an ink which recreates their native environment, such as body tissue, and therefore recreating biological scenarios or tissues with molecular control.

The approach uses a self-assembling ink that can chemically and structurally resemble the cells’ natural surrounding environment. This capability has implications for tissue engineering, drug screening methods, and regenerative medicine as it introduces the potential to recreate biological scenarios or tissues with molecular control.

The technique can be used to fabricate complex macroscopic structures, using cells and biomolecules normally found in natural tissues, so that they resemble naturally occurring structures. The applications of a technique which can create complex patterns that mimic naturally occurring forms are varied.

Biological constructs resembling specific cell environments and tissues can be designed and created for use in different fields such as tissue engineering, to test drugs in a more efficient manner, and regenerative medicine. Complex biological scenarios (such as niches where cancer grows and where the immune cells interact with other cells) can be constructed and used to study a variety of diseases.

Previous investigations into the use of self-assembling materials as inks for bioprinting have focused on self-assembling peptides that can gel over dry surfaces, maintaining their shape and ability to encapsulate cells.

This new study presents a number of advantages over previous techniques, including being able to incorporate multiple macromolecules, recreating the way these molecules are presented in in vivo. Furthermore, the study opens new opportunities in biofabrication by enabling for the first time the possibility to control biomolecular and physical elements at the molecular, nano and microscale.

Link to the full paper: Hydrodynamically Guided Hierarchical Self-Assembly of Peptide–Protein Bioinks, Advanced Functional Materials, February 2018

This work was supported by the ERC Starting Grant (STROFUNSCAFF), the FP7-PEOPLE-2013-CIG Biomorph, the Royal Society, and the European Space Agency (Drop My Thesis program, 2016).

Story courtesy of the Department of Engineering Science

Similar stories

Cancer Research UK to invest £11 million into cancer science in Oxford

A £11 million Cancer Research UK investment has been awarded to the University of Oxford and Oxford-based NHS to catalyse the translation of its world-leading cancer research for patient benefit.

Mystery of sweet potato origin uncovered, as missing link plant found by Oxford research

New scientific research from Oxford University's Plant Sciences department transforms our understanding of the origins of the sweet potato - identifying a key piece in the puzzle of the evolutionary history of one of the world’s most important staple crops.

Oxford researchers discover unexpected deep diving in albatross

Data collected by the team revealed that 50% of the birds studied were capable of diving over twice the depth previously thought, with implications for conservation efforts of this endangered species.

Royal Society cautions against online censorship of scientific misinformation

Governments and social media platforms should not rely on content removal for combatting harmful scientific misinformation online, according to a report today from the Royal Society, the UK’s national academy of science. Professor Sir Nigel Shadbolt, Oxford Professor of Computing Science, was on the working group for the report.

Plastic Drawdown tool to help Maldives slash plastic waste by 85 percent, study reveals

A new study published in the journal Global Environmental Change reveals a new policy tool developed by an international team, including scientists at Oxford University, which could slash plastic waste.

New test can identify if a patient has cancer and if it has spread

A publication by University of Oxford researchers describes a new minimally invasive and inexpensive blood test that can identify cancer in patients with non-specific symptoms.