Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Research carried out by the Department of Engineering Science, Queen Mary University of London and Nanyang Technological University (Singapore), published recently in Advanced Functional Materials, aims to integrate the benefits of self-assembly with nanoscale precision - building structures by assembling molecules like Lego pieces - with novel bio-ink printing techniques.

Images of the peptide-protein bio-ink technique

This process opens up possibilities for building complex biological structures with cells embedded in an ink which recreates their native environment, such as body tissue, and therefore recreating biological scenarios or tissues with molecular control.

The approach uses a self-assembling ink that can chemically and structurally resemble the cells’ natural surrounding environment. This capability has implications for tissue engineering, drug screening methods, and regenerative medicine as it introduces the potential to recreate biological scenarios or tissues with molecular control.

The technique can be used to fabricate complex macroscopic structures, using cells and biomolecules normally found in natural tissues, so that they resemble naturally occurring structures. The applications of a technique which can create complex patterns that mimic naturally occurring forms are varied.

Biological constructs resembling specific cell environments and tissues can be designed and created for use in different fields such as tissue engineering, to test drugs in a more efficient manner, and regenerative medicine. Complex biological scenarios (such as niches where cancer grows and where the immune cells interact with other cells) can be constructed and used to study a variety of diseases.

Previous investigations into the use of self-assembling materials as inks for bioprinting have focused on self-assembling peptides that can gel over dry surfaces, maintaining their shape and ability to encapsulate cells.

This new study presents a number of advantages over previous techniques, including being able to incorporate multiple macromolecules, recreating the way these molecules are presented in in vivo. Furthermore, the study opens new opportunities in biofabrication by enabling for the first time the possibility to control biomolecular and physical elements at the molecular, nano and microscale.

Link to the full paper: Hydrodynamically Guided Hierarchical Self-Assembly of Peptide–Protein Bioinks, Advanced Functional Materials, February 2018

This work was supported by the ERC Starting Grant (STROFUNSCAFF), the FP7-PEOPLE-2013-CIG Biomorph, the Royal Society, and the European Space Agency (Drop My Thesis program, 2016).

Story courtesy of the Department of Engineering Science

Similar stories

Oxford zoologists find rare wild ancestors of feral pigeons living on British and Irish islands

DNA testing reveals that rock doves, the wild ancestors of the common domestic and feral pigeons, now extinct in many parts of the world, are still living on islands in Scotland and Ireland.

Oxford Flight Group reveals how hawks control flight and landing to prioritise safety

Oxford biomechanics researchers have been using computer simulations and Hollywood-style motion capture to reveal how Harris hawks optimise their landing manoeuvres for an accurate descent.

Professor Samuel Sheppard, to join Ineos Oxford Institute to further interdisciplinary research on antimicrobial resistance

Professor Sheppard will join the Department of Biology and the IOI in September 2022, with the aim of using fundamental evolutionary and ecological theory to address consequential questions in pathogen emergence and spread.

Nadja Yang recognised by Women's Engineering Society with 'Top 50 Women in Engineering - Inventors and Innovators' award

DPhil Systems Engineering student, Nadja Yang has been recognised as one of the UK's top 50 women engineers who are creating or significantly improving products or processes to make a difference in the world, on International Women in Engineering Day.

Engineering researcher awarded funding to lead international collaboration on machine-learning for cardiac monitoring

Royal Academy of Engineering Research Fellow, Dr Tingting Zhu, has been awarded Royal Society funding to lead an international collaboration that aims to develop an open-source platform for cardiac monitoring, using machine-learning.