Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Researchers from the University of Oxford’s Department of Zoology have demonstrated pre-clinical success for a universal flu vaccine.

Artist's impression of a virus

Influenza is thought to be a highly variable virus, able to mutate and escape immunity built up in the population due to its circulation in previous seasons. However, influenza seasons tend to be dominated by a limited number of antigenically and genetically distinct influenza viruses. This creates a paradox as influenza is thought of as being highly variable while in reality influenza seasons are dominated by only a few strains.

Mathematical models produced in Professor Sunetra Gupta’s group at the University of Oxford over the past 20 years have sought to find an answer to this paradox. Finally, through a collaborative approach across multiple departments, the group believes they have the answer, demonstrated in a paper published today in Nature Communications.

Dr Craig Thompson said: ‘The integrated approach to vaccine design that we have applied to flu has to the potential to be applied to other previously intractable pathogens and could revolutionise the way we develop vaccines.’

Professor Sunetra Gupta said: ‘I think this work serves a good example of how evolutionary models can have translational impact. We have gone from a prediction of a mathematical model to a blueprint for a universal influenza vaccine.  The outstanding teamwork coordinated by Dr Thompson is what made it all possible.’

The research team theorized that parts of the virus targeted by the immune system are, in fact, limited in variability and act as constraints on the evolution of the virus. Dr Craig Thompson in Professor Gupta’s group has now identified the location of these regions of limited variability. He has shown that such locations are targeted naturally by the immune system and through vaccination studies has shown that regions of influenza viruses that circulated in 2006 and 1977 were able to protect against infection with an influenza virus that last circulated in 1934.

The results of these studies can be exploited to create a novel type of ‘universal’ or broadly protective influenza vaccine, which once administered would provide lifelong protection against influenza. The team also hopes to apply the approach to other viruses such as HIV and HCV and believes that they can use it to produce a vaccine that protects against the common cold. The novel approach to vaccine design is outlined in the paper published in Nature Communications. Furthermore, such vaccines should be able to be produced in a low-cost manner, enabling healthcare providers such as the NHS to save money, unlike many new vaccines and drugs coming to the market.

This study also presents one of the first examples of where a mathematical model of the evolutionary dynamics of an infectious disease has led to the experimental identification of a novel vaccine target. The novel approach won an MRC Confidence in Concept Award in 2016, a Royal Society Translational Award in 2017 and an ERC Proof of Concept grant in 2018.

The WHO estimates that influenza kills 260,000-650,000 people and causes 3-5 million cases of severe illness each year. This burden typically falls on the elderly and young children, especially in developing countries. The best way to protect against influenza is through vaccination, although the problem with this is that the current influenza vaccine has to be administered each year and varies in its effectiveness. 

The paper ‘A naturally protective epitope of limited variability as an influenza vaccine target’ is available at Nature Communications.

Read the blog in Nature Microbiology 'From a mathematical model to a new influenza vaccine'.

Similar stories

Global Jet Watch: discovery of jets in classical novae

Scientists at the University of Oxford have discovered that classical nova explosions are accompanied by the ejection of jets of oppositely-directed hot gas and plasma, and that this persists for years following the nova eruption. Previously, such jets had only been encountered emanating from very different systems such as black holes or newly collapsing stars.

Green light for European Space Agency mission to Venus

Oxford University scientists will play a leading role in a new mission to study the geology and atmosphere of Venus, our neighbouring planet, helping determine whether it was once habitable – and why Earth became the only known planet that can sustain life.

Averting an antibiotics apocalypse: major funding announced to tackle resistance to antibiotics

A cross-disciplinary team from the Universities of Oxford, Ulster and UCL have announced major funding from EPSRC to tackle the growing challenge of Antimicrobial Resistance (AMR).

Subatomic particle seen changing to antiparticle and back for the first time

Physicists have proved that a subatomic particle can switch into its antiparticle alter-ego and back again. An extraordinarily precise measurement made by Oxford researchers using the LHCb experiment at CERN has provided the first evidence that charm mesons can change into their antiparticle and back again.

Science Blog: The wet market sources of Covid-19: bats and pangolins have an alibi

By David Macdonald, Department of Zoology. The finger of blame has been pointed at wildlife trade in the wet markets of Wuhan, Hubei, China, where this Covid-19 outbreak seems to have originated. But could bats and pangolins really be responsible?

COVID-19 lockdowns significantly reduced transmission of invasive bacterial diseases

A new international study involving University of Oxford researchers has conclusively demonstrated that national lockdowns and public health campaigns introduced at the start of the pandemic have reduced the transmission of bacteria that cause respiratory infections.