Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Professor John B Goodenough from the Cockrell School of Engineering at The University of Texas at Austin has been awarded the Nobel Prize in Chemistry for his work at Oxford University that made possible the development of lithium-ion batteries.

None

He received the award jointly with Oxford DPhil graduate M. Stanley Whittingham and Akira Yoshino.

In 1980, during his time as Head of the Inorganic Chemistry Department at Oxford, Professor Goodenough, along with Koichi Mizushima, Philip C Jones and Philip J Wiseman, identified the cathode material that enabled development of the rechargeable lithium-ion battery. This breakthrough ushered in the age of portable electronic devices such as laptops and smartphones.

Professor Louise Richardson, Vice-Chancellor of the University of Oxford, said: 'We are delighted that a second Oxford discovery has been honoured with a Nobel Prize within a week. Professor John Goodenough’s discovery of cathode material here enabled the development of the lithium-ion battery, introducing the mobile phone era and transforming lives worldwide. Our warmest congratulations go to Professor Goodenough and also to Professor M Stanley Whittingham, who obtained his undergraduate and postgraduate degrees at Oxford. Today, we are continuing the work Professor Goodenough pioneered at Oxford with major programmes of research into lithium batteries and energy storage.'

Professor Steve Faulkner, Head of Inorganic Chemistry at the University of Oxford, said: ‘John Goodenough and his group pioneered the development of lithium cathode materials in Oxford; without this work, the rechargeable lithium battery (and arguably the modern connected world) would not exist. His decade in charge of the Inorganic Chemistry Laboratory at the University of Oxford created a field of research that continues to thrive here. Professor Goodenough is distinguished by making notable contributions to scientific knowledge in every decade since the 1950s, crossing disciplines and defining new ones.’ 

None
John Goodenough (front row, second from right) with his colleagues at Oxford in 1982, two years after creating the cobalt-oxide cathode. Image courtesy of John Goodenough

In May 2019, Professor Goodenough was also awarded the Royal Society’s Copley Medal, the world’s oldest scientific prize. He is a fellow of the Royal Society and is an Honorary Fellow of St Catherine's College, Oxford.The news of the Chemistry Nobel Prize follows the award of the 2019 Nobel Prize in Physiology or Medicine to Professor Sir Peter J Ratcliffe, Director for the Target Discovery Institute within the Nuffield Department of Medicine at Oxford University and Director of Clinical Research at Francis Crick Institute, London.

Joint winner, M. Stanley Whittingham of Binghamton University, State University of New York, USA, was an undergraduate and graduate student in Inorganic Chemistry in Oxford, and his work on lithium titanium sulfide battery cathodes laid the foundations for Goodenough’s later developments.

On Monday, Professor Sir Peter J Ratcliffe, Director for the Target Discovery Institute within the Nuffield Department of Medicine at Oxford University and Director of Clinical Research at Francis Crick Institute, London, was announced as a winner of the Nobel Prize in Physiology or MedicineSir Peter was announced as a winner of the Prize alongside William G Kaelin, Jr of Harvard University and Gregg L Semenza of Johns Hopkins University. Together they discovered the key mechanisms that our cells use to detect and respond to low oxygen levels, known as 'hypoxia'. Sir Peter has a long-standing collaboration with groups in the Department of Chemistry.

Story courtesy of the University of Oxford News Office and the Department of Chemistry

 

Similar stories

New machine learning system developed to identify deteriorating patients in hospital

Biomedical engineering Medical science Research

Researchers in Oxford have developed a machine learning algorithm that could significantly improve clinicians’ ability to identify hospitalised patients whose condition is deteriorating to the extent that they need intensive care.

£100 million donation from Ineos to create new institute to fight antimicrobial resistance

Chemistry Funding Medical science Zoology

Ineos, one of the world’s largest manufacturing companies, and the University of Oxford are launching a new world-leading institute to combat the growing global issue of antimicrobial resistance (AMR), which currently causes an estimated 1.5 million excess deaths each year.

Jocelyn Bell Burnell receives highest accolade from Royal Astronomical Society

Award Physics

Jocelyn Bell Burnell from the Department of Physics has been awarded the Royal Astronomical Society’s highest honour, the Gold Medal 2021. The medal recognises her extraordinary achievements and has been awarded not only for her personal research but also for her contributions to the field of astronomy generally.

Eight Oxford researchers, including five from MPLS, awarded major European Research Council funding

Chemistry Engineering Funding Plant sciences Zoology

European Research Council grants worth more than €16.3 million have been awarded to University of Oxford researchers for a range of cutting-edge projects.

$10 million gift for new Nanoscience Institute in Oxford

Biomedical engineering Chemistry Engineering Funding Materials science Medical science Physics

A new institute for nanoscience research is to open in Oxford thanks to a $10 million gift from The Kavli Foundation.

Similar stories

New machine learning system developed to identify deteriorating patients in hospital

Biomedical engineering Medical science Research

Researchers in Oxford have developed a machine learning algorithm that could significantly improve clinicians’ ability to identify hospitalised patients whose condition is deteriorating to the extent that they need intensive care.

£100 million donation from Ineos to create new institute to fight antimicrobial resistance

Chemistry Funding Medical science Zoology

Ineos, one of the world’s largest manufacturing companies, and the University of Oxford are launching a new world-leading institute to combat the growing global issue of antimicrobial resistance (AMR), which currently causes an estimated 1.5 million excess deaths each year.

Jocelyn Bell Burnell receives highest accolade from Royal Astronomical Society

Award Physics

Jocelyn Bell Burnell from the Department of Physics has been awarded the Royal Astronomical Society’s highest honour, the Gold Medal 2021. The medal recognises her extraordinary achievements and has been awarded not only for her personal research but also for her contributions to the field of astronomy generally.

Eight Oxford researchers, including five from MPLS, awarded major European Research Council funding

Chemistry Engineering Funding Plant sciences Zoology

European Research Council grants worth more than €16.3 million have been awarded to University of Oxford researchers for a range of cutting-edge projects.

$10 million gift for new Nanoscience Institute in Oxford

Biomedical engineering Chemistry Engineering Funding Materials science Medical science Physics

A new institute for nanoscience research is to open in Oxford thanks to a $10 million gift from The Kavli Foundation.