Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Scientists have unveiled a new integrated photonic hardware that can store and process information in ways similar to that of the human brain.

Computer chip with human brain superimposed © Shutterstock

A team of European scientists from Germany and the UK has revealed a pioneering new way to create optical neural networks that ‘teach themselves’ to recognise patterns in image data.

Traditional computers are built on the von Neumann architecture, with separate memory and processor units operating one command at a time.

Compared to the brain – where processing and memory functions are co-located and a massively parallel approach is used – this can be very inefficient.

To develop computers that work more like the brain, hardware devices that operate in a similar way to brain neurons and synapses are needed, and such devices should be combined into large-scale networks capable of real-world tasks.

Prof Wolfram Pernice from the University of Muenster, lead-partner in the study, explains, “We have made significant steps towards this goal – working here with light-based devices rather than electronics - demonstrating integrated photonic neurosynaptic networks that can recognise patterns, identify letters and numbers, even correctly differentiate between the languages of written text.”

Prof Harish Bhaskaran, co-author from Oxford University Department of Materials added, “Working with photons instead of electrons will allow us to exploit well-known benefits of optical technologies - wavelength division multiplexing, ultra-high bandwidths, low energy consumption - but here in the realm of computing rather than the more usual communications field”.

Johannes Feldmann, first author of the paper, also from Muenster, pointed out that, “Key to our work is the successful merging of phase-change devices and silicon photonics – this gives us the ability to successfully mimic the behaviour of biological neurons and synapses, at least in a basic way.”

Prof C David Wright, co-author of the study from the University of Exeter, summed up by saying, “This is, we believe, a significant experimental milestone - a fully-scalable integrated photonic system that can process and store information in a brain-like fashion. Our approach could find widespread utility in power-critical situations such mobile and so-called ‘edge computing’ applications.”

This collaborative work was funded by the UK’s EPSRC (grants EP/J018694/1, EP/M015173/1 and EP/M015130/1), Germany’s DfG (grant PE 1832/5-1) and the European Commission’s ERC (grant 724707) and H2020 (the Fun-COMP project, grant 780848) programmes

The paper 'All-optical spiking neurosynaptic networks with self-learning capabilities', by J Feldmann, N Youngblood, C D Wright, H Bhaskaran and W H P Pernice, is published in Nature.

Story courtesy of the University of Oxford News Office

Similar stories

A unique international ‘zoom’ collaboration to develop treatments for COVID-19

An international collaboration of 29 scientists around the world has focused on understanding how SARS-COV-2 makes its worker proteins at the molecular level in order to develop novel antiviral drugs that block their production.

Troubled waters: How global marine wildlife protection can undermine fishing communities

New research led by the University of Oxford, published in Conservation Letters, has examined the conflict between small-scale fisheries and marine mammals, using the experience of fisheries on the west coast of South America to highlight a worldwide issue.

How Oxford University research is helping feed the world in the 21st century

New research published recently in the journal eLife sheds fresh light on plant chloroplasts, and the proteins inside them. The regulation of chloroplast proteins is important for plant development and stress acclimation and is increasingly significant as plants are having to respond to changing environments.

Eight Oxford researchers win top UKRI Future Leaders Fellowships

Five of the new Fellows are from MPLS Division. The Fellowships have been created by UKRI to help develop the next wave of world-class research and innovation leaders in academia and business.

Coronavirus Epidemics first hit more than 21,000 years ago

A new Oxford University Study, published today, shows that the most recent common ancestor of the SARS-CoV viruses existed more than 21,000 years ago, nearly 30 times older than previous estimates.

Reducing children’s exposure to malaria in their early years substantially cuts the risk of hospitalisation

For the first time in more than two decades, a team from the KEMRI-Wellcome Trust Research Programme and University of Oxford (including Department of Zoology researchers) have quantified the risk of children suffering severe outcomes from malaria.