Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

New research published in Nature Ecology & Evolution from the Department of Zoology aims to show how big data can be used as an essential tool in the quest to monitor the planet’s biodiversity.

A research team from 30 institutions across the world, involving Oxford University’s Associate Professor in Ecology, Rob Salguero-Gómez, has developed a framework with practical guidelines for building global, integrated and reusable Essential Biodiversity Variables (EBV) data products.

They identified a ‘void of knowledge due to a historical lack of open-access data and a conceptual framework for their integration and utilisation'. In response the team of ecologists came together with the common goal of examining whether it is possible to quantify, compile, and provide data on temporal changes in species traits to inform national and international policy goals.

These goals, such as the Sustainable Developmental Goals (SDG) of the United Nations, have become fundamental in shaping global economic investments and human actions to preserve and protect nature and its ecoservices.

Essential Biodiversity Variables (EBVs) have been proposed as ideal measurable traits for detecting changes in biodiversity. Yet, the researchers say, little progress has been made to empirically estimate how EBVs in fact change through time at the regional and global scales.

To overcome this, Rob Salguero-Gómez and his international collaborators have developed a framework with practical guidelines for building global, integrated and reusable EBV data products of species traits. This framework will greatly aid in the monitoring of species trait changes in response to global change and human pressures, with the aim to use species trait information in national and international policy assessments.

Salguero-Gómez says: 'We have for the first time synthesised how species trait information can be collected (specimen collections, in-situ monitoring, and remote sensing), standardised (data and metadata standards), and integrated (machine-readable trait data, reproducible workflows, semantic tools and open access licenses).'

This latest review provides a perspective on how species traits can contribute to assessing progress towards biodiversity conservation and sustainable development goals. The researchers believe that big data is one of the keys to address the global and societal problems from security food, to preventing ecoservice loss, or effects of climate change. 

They say that the operationalization of this idea will require substantial financial and in-kind investments from universities, research infrastructures, governments, space agencies and other funding bodies. ‘Without the support of the Max Planck Institute for Demographic Research, NERC, Oxford, and the open-access mentality of hundreds of population ecologists, our work with COMPADRE & COMADRE would not have been possible,’ says Salguero-Gómez.

The integration of trait data to address global questions in ecology, evolution, and conservation biology is one of the main themes in Salguero-Gómez’ research group, the SalGo Lab.

This work was funded primarily by the Horizon 2020 project GLOBIS-B of the European Commission.

Read the full paper in Nature Ecology & Evolution.

Similar stories

Researchers say we don’t know how most mammals will respond to climate change

Climate change Zoology

Researchers at the University of Oxford, alongside international collaborators, have found that there is a significant knowledge gap in the risks posed by climate change to mammals.

Scientists confirm bacteria’s genetic ‘Swiss army knife’ is key driver of antibiotic resistance

Zoology

Antibiotic resistance is a huge challenge facing society globally, posing a threat not only to human health but in areas such as food security and the economy. The more we know about the mechanisms behind antibiotic resistance, the better we can respond to these threats.

Oxford research given significant boost to develop lithium-rich battery cathodes

Materials science Research

A team of scientists, including those based at the University of Oxford as part of the Faraday Institution CATMAT project, researching next-generation cathode materials have made a significant breakthrough in understanding oxygen-redox processes involved in lithium-rich cathode materials.

Lack of prey is causing puffin chicks to starve leading to population declines

Research Zoology

New research from the University of Oxford’s Department of Zoology has used innovative technology to study causes of declines in puffin populations in the northeast Atlantic, and found that a lack of prey near some major breeding colonies is driving puffin chicks to starve, ultimately leading to population declines.

Could South African mine wastes provide a feasible storage method for millions of tonnes of CO2?

Climate change Engineering Research

An article written for the University's Science Blog by Liam Bullock (Engineering Science), Zakhele Nkosi and Maxwell Amponsah-Dacosta.

Engineering Science team awarded joint UK-Ireland funding to research ocean wave breaking

Engineering Funding Research

£1.1m multi-institution project aims to assist the development of offshore renewable energy in challenging sea conditions.

Similar stories

Researchers say we don’t know how most mammals will respond to climate change

Climate change Zoology

Researchers at the University of Oxford, alongside international collaborators, have found that there is a significant knowledge gap in the risks posed by climate change to mammals.

Scientists confirm bacteria’s genetic ‘Swiss army knife’ is key driver of antibiotic resistance

Zoology

Antibiotic resistance is a huge challenge facing society globally, posing a threat not only to human health but in areas such as food security and the economy. The more we know about the mechanisms behind antibiotic resistance, the better we can respond to these threats.

Oxford research given significant boost to develop lithium-rich battery cathodes

Materials science Research

A team of scientists, including those based at the University of Oxford as part of the Faraday Institution CATMAT project, researching next-generation cathode materials have made a significant breakthrough in understanding oxygen-redox processes involved in lithium-rich cathode materials.

Lack of prey is causing puffin chicks to starve leading to population declines

Research Zoology

New research from the University of Oxford’s Department of Zoology has used innovative technology to study causes of declines in puffin populations in the northeast Atlantic, and found that a lack of prey near some major breeding colonies is driving puffin chicks to starve, ultimately leading to population declines.

Could South African mine wastes provide a feasible storage method for millions of tonnes of CO2?

Climate change Engineering Research

An article written for the University's Science Blog by Liam Bullock (Engineering Science), Zakhele Nkosi and Maxwell Amponsah-Dacosta.

Engineering Science team awarded joint UK-Ireland funding to research ocean wave breaking

Engineering Funding Research

£1.1m multi-institution project aims to assist the development of offshore renewable energy in challenging sea conditions.