Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

In a series of videos launching The Mathematical Observer, a new YouTube channel showcasing the research performed in the Oxford Mathematics Observatory, Oxford Mathematician Michael Gomez (in collaboration with Derek Moulton and Dominic Vella) investigates the science behind the jumping popper toy.

A jumping popper toy

 

Snap-through buckling is a type of instability in which an elastic object rapidly jumps from one state to another. Such instabilities are familiar from everyday life: you have probably been soaked by an umbrella flipping upwards in high winds, while snap-through is harnessed to generate fast motions in applications ranging from soft robotics to artificial heart valves. In biology, snap-through has long been exploited to convert energy stored slowly into explosive movements: both the leaf of the Venus flytrap and the beak of the hummingbird snap-through to catch prey unawares.

Despite the ubiquity of snap-through in nature and engineering, how fast snap-through occurs (i.e. its dynamics) is generally not well understood, with many instances reported of delay phenomena in which snap-through occurs extremely slowly. A striking example is a children’s ‘jumping popper’ toy, which resembles a rubber spherical cap that can be turned inside-out. The inside-out shape remains stable while the cap is held at its edges, but leaving the popper on a surface causes it to snap back to its natural shape and leap upwards. The snap back is not immediate: a time delay is observed during which the popper moves very slowly before rapidly accelerating.

The delay can be several tens of seconds in duration — much slower than the millisecond or so that would be expected for an elastic instability. Playing around further reveals other unusual features: holding the popper toy for longer before placing it down generally causes a slower snap-back, and the amount of delay is highly unpredictable, varying greatly with each attempt.

See more videos: Episode two: how fast the popper toy snaps, and how its unpredictable nature can arise purely from the mathematical structure of the snap-through transition.

Find out more about the Mathematical Institute at Oxford.

Similar stories

Turing Fellowships for over 30 Oxford academics

Thirty-three University of Oxford researchers have been named Turing Fellows for the 2021/22 academic year. 23 of the fellows come from MPLS departments.

New research provides compelling evidence of the connection between AMR surgical-site infections and arthropods

AMR could render many of the current mainstay and last-resort antibiotics useless, resulting in many more deaths from previously treatable infections. In 2019, a UN report estimated that drug-resistant microbes could lead to ten million deaths per year, and cost the world $100trn, by 2050.

New research links tree health to how birds respond to climate change

New research has revealed that shifts in the timing of egg laying by great tits in response to climate change vary markedly between breeding sites within the same woodland and that this variation is linked to the health of nearby oak trees.

The physics behind a water bear's lumbering gait

Recent research (joint between the University of Oxford, Rockefeller University, and Princeton University) has found that the way tardigrades coordinate their 'walking' motion mirrors the stepping patterns of larger panarthropods such as stick insects and spiders.

Apollo 17 mission helps Oxford research the shape of the Moons magnetic field

Rock samples collected during the final manned mission to the Moon have turned out to be critical for a study nearly 50 years later.

Peering into the Moon's permanently shadowed regions with AI

The Moon’s polar regions are home to craters and other depressions that never receive sunlight. Permanently shadowed lunar craters contain water ice but are difficult to image. An AI algorithm now provides sharper images, allowing us to see into them with high resolution for the first time.