Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.
Artist's impression of Jurassic organisms on the sea floor

Long-standing theories in biology assume that competition between individual organisms limits how much a species can use a resource and therefore how geographically widespread that species can become. Geographic distributions, in turn, affect community structure and extinction rates, so the small-scale competition between animals or plants could regulate much larger-scale patterns of biogeography and biodiversity. This concept, known as ‘ecological release’ forms the cornerstone of many fundamental evolutionary theories. However, much of the modern evidence for this assumption is based on studies of vertebrates in terrestrial systems, and the crucial link between competition and geographic ranges has seldom been tested at a species-level or in marine ecosystems.

Artist's impression of Jurassic organisms on the sea floorThe mid Jurassic is an example of a mass extinction event in the oceans. Before the extinction (T1), species may have been limited in geographic range because competitors excluded each other. After the extinction (T2), it has long been assumed that the survivors spread out into the space of their fallen rivals, so-called ‘ecological release.’ On geologic scales, theory predicts the number of species and amount of competition to change in the opposite way as do species’ geographic range size and chance of surviving extinction. The current study found no support for this idea, however. Artistic reconstruction by Andrew Orkney.

A new study by researchers from the University of Oxford Department of Earth Sciences, Friedrich-Alexander University in Erlangen, and the Berlin Natural History Museum suggest that competition may not be as important on large scales as prevailing theory would suggest. The team examined bivalve and brachiopod species’ distributions throughout the Phanerozoic (the last 485 million years). These two animal groups are filter-feeding marine invertebrates of similar body size, and their fossils are abundant and well-studied.

Oysters, scallops, and brachiopods competing for space on the seafloor© Martin Aberhan

The study focused on filter-feeding animals in marine ecosystems. Animals like oysters, scallops, and brachiopods must compete for space on the seafloor. Illustration by Martin Aberhan.

The new study published today in the journal Current Biology reports that, contrary to expectations, geographic range size varied independently with species count. If the distribution of different species was limited by competition, species would instead have been less widespread on average, when there were more potential competitors in the same region. Similarly, after mass extinction events like the end-Cretaceous extinction 65 million years ago (when non-avian dinosaurs perished), survivors had been predicted to expand into the space left by fallen competitors.

‘It’s like when a lot of people share a workspace. As soon as one person moves out, everyone else spreads their stuff out onto the empty desk,’ explained DPhil student Gwen Antell, the lead author. Surprisingly, however, it appears that species which survived biotic crises did not tend to expand in distribution. In fact, animals’ ranges changed seemingly independently of whether the number of potential competitors increased or decreased.

The results suggest that over Earth’s history, factors other than competition have driven dominant evolutionary and macroecological patterns in marine animals. For instance, habitat availability could play a large role in how far a species can spread.

Maps showing survival and extinction of Jurassic species in different scenarios© Andrew Orkney

Species’ geographic distributions are expected to expand after a mass extinction (Earth at bottom left), such as the biotic crisis around 175 million years ago. However, new evidence suggests that species remained equally widespread (Earth at bottom right). Current Biology.

Associate Professor Erin Saupe, senior author on the study, noted, ‘we often assume that species expand their geographic ranges after major extinction events in the fossil record, but our work shows this is not the predominant pattern, at least in the marine record of bivalves and brachiopods. It is really important to test these assumptions.’

The research was funded by the Clarendon Foundation, Leverhulme Trust, and German Research Foundation (DFG). The article was released online at Current Biology on 12 December:

Antell, G.S., Kiessling, W., Aberhan, M., and Saupe, E.E. Marine biodiversity and geographic distributions are independent on large scales. Current Biology (2019).

Story courtesy of the Department of Earth Sciences

Similar stories

CO2 removal is essential to achieving net zero

An article by Dr Steve Smith, executive director of the Oxford Net Zero Initiative and the CO2RE hub, which is focussed on greenhouse gas removal.

A unique international ‘zoom’ collaboration to develop treatments for COVID-19

An international collaboration of 29 scientists around the world has focused on understanding how SARS-COV-2 makes its worker proteins at the molecular level in order to develop novel antiviral drugs that block their production.

Troubled waters: How global marine wildlife protection can undermine fishing communities

New research led by the University of Oxford, published in Conservation Letters, has examined the conflict between small-scale fisheries and marine mammals, using the experience of fisheries on the west coast of South America to highlight a worldwide issue.

How Oxford University research is helping feed the world in the 21st century

New research published recently in the journal eLife sheds fresh light on plant chloroplasts, and the proteins inside them. The regulation of chloroplast proteins is important for plant development and stress acclimation and is increasingly significant as plants are having to respond to changing environments.

Coronavirus Epidemics first hit more than 21,000 years ago

A new Oxford University Study, published today, shows that the most recent common ancestor of the SARS-CoV viruses existed more than 21,000 years ago, nearly 30 times older than previous estimates.

Reducing children’s exposure to malaria in their early years substantially cuts the risk of hospitalisation

For the first time in more than two decades, a team from the KEMRI-Wellcome Trust Research Programme and University of Oxford (including Department of Zoology researchers) have quantified the risk of children suffering severe outcomes from malaria.