Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Oxfordshire’s international strength in applied superconductivity technology has been boosted by a major new Oxford University research centre, the Centre for Applied Superconductivity. Superconductors are proving themselves vital for powerful new technologies in healthcare, quantum computing and many other fields.

A superconducting magnet
Image credit Stephen Blundell and Andrew Boothroyd

The phenomenon of superconductivity was first discovered in solid mercury at liquid helium temperatures over a hundred years ago. When cooled below a critical temperature, close to absolute zero, mercury superconductor exhibits a remarkable property: an electrical current passed through it shows no resistance at all. Over the last century, it has been found that a larger range of materials can also exist in this unique state of matter.

Even materials such as metals that are good conductors of electricity normally show resistance to electrical currents, which results in electrical energy being wasted as heat. But superconductors can carry current without any dissipation, and so they have enormous potential for improving electrical efficiency, especially where equipment requires large amounts of power. Superconductors are already used in applications such as MRI scanners and particle accelerators like the Large Hadron Collider. One stumbling block, however, is that most existing superconducting materials only work at extremely low temperatures. This requires the use of expensive cryogenic liquids to achieve the necessary cooling.

Oxford’s new Centre for Applied Superconductivity (CfAS) aims to provide a ‘joined up’ approach to problems in superconductivity, linking together fundamental physics research, materials discovery and development, and industry. It is a collaborative effort between local companies and Oxford University’s Departments of Materials and Physics. Funding has been provided through the Oxfordshire Local Enterprise Partnership (OxLEP) and has led to the creation of new laboratories within both University departments.

The Centre has already established research projects with leading local companies in the sector, including Siemens Magnet Technology and Tokamak Energy, and been consulted by international research organisations including CERN. Superconducting circuits will also play a big role in the development of new quantum technologies. Achieving this requires a sustained effort to understand the fundamental nature of superconductivity. To do this, researchers are using high magnetic field facilities in Oxford and around the world which are capable of generating fields a million times stronger than the Earth’s. This enables them to look inside the superconducting state and study its electronic structure. Some newly-discovered superconductors can function at unusually high temperatures, the highest being about -70°C. This is still colder than the average winter temperature in Antarctica, however, so the ultimate goal is to predict and discover superconductors that work at room temperature.

Described by Dr David Kingham, Chief Executive of Tokamak Energy, as ‘a vital local resource that enables us to tackle such a huge challenge of global importance’, CfAS provides world-leading problem solving expertise for industry and training for new generations of technicians and scientists as well as cutting-edge research into new superconducting products and processes.

Similar stories

CO2 removal is essential to achieving net zero

An article by Dr Steve Smith, executive director of the Oxford Net Zero Initiative and the CO2RE hub, which is focussed on greenhouse gas removal.

A unique international ‘zoom’ collaboration to develop treatments for COVID-19

An international collaboration of 29 scientists around the world has focused on understanding how SARS-COV-2 makes its worker proteins at the molecular level in order to develop novel antiviral drugs that block their production.

Troubled waters: How global marine wildlife protection can undermine fishing communities

New research led by the University of Oxford, published in Conservation Letters, has examined the conflict between small-scale fisheries and marine mammals, using the experience of fisheries on the west coast of South America to highlight a worldwide issue.

How Oxford University research is helping feed the world in the 21st century

New research published recently in the journal eLife sheds fresh light on plant chloroplasts, and the proteins inside them. The regulation of chloroplast proteins is important for plant development and stress acclimation and is increasingly significant as plants are having to respond to changing environments.

Eight Oxford researchers win top UKRI Future Leaders Fellowships

Five of the new Fellows are from MPLS Division. The Fellowships have been created by UKRI to help develop the next wave of world-class research and innovation leaders in academia and business.

Coronavirus Epidemics first hit more than 21,000 years ago

A new Oxford University Study, published today, shows that the most recent common ancestor of the SARS-CoV viruses existed more than 21,000 years ago, nearly 30 times older than previous estimates.