Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Oxfordshire’s international strength in applied superconductivity technology has been boosted by a major new Oxford University research centre, the Centre for Applied Superconductivity. Superconductors are proving themselves vital for powerful new technologies in healthcare, quantum computing and many other fields.

A superconducting magnet
Image credit Stephen Blundell and Andrew Boothroyd

The phenomenon of superconductivity was first discovered in solid mercury at liquid helium temperatures over a hundred years ago. When cooled below a critical temperature, close to absolute zero, mercury superconductor exhibits a remarkable property: an electrical current passed through it shows no resistance at all. Over the last century, it has been found that a larger range of materials can also exist in this unique state of matter.

Even materials such as metals that are good conductors of electricity normally show resistance to electrical currents, which results in electrical energy being wasted as heat. But superconductors can carry current without any dissipation, and so they have enormous potential for improving electrical efficiency, especially where equipment requires large amounts of power. Superconductors are already used in applications such as MRI scanners and particle accelerators like the Large Hadron Collider. One stumbling block, however, is that most existing superconducting materials only work at extremely low temperatures. This requires the use of expensive cryogenic liquids to achieve the necessary cooling.

Oxford’s new Centre for Applied Superconductivity (CfAS) aims to provide a ‘joined up’ approach to problems in superconductivity, linking together fundamental physics research, materials discovery and development, and industry. It is a collaborative effort between local companies and Oxford University’s Departments of Materials and Physics. Funding has been provided through the Oxfordshire Local Enterprise Partnership (OxLEP) and has led to the creation of new laboratories within both University departments.

The Centre has already established research projects with leading local companies in the sector, including Siemens Magnet Technology and Tokamak Energy, and been consulted by international research organisations including CERN. Superconducting circuits will also play a big role in the development of new quantum technologies. Achieving this requires a sustained effort to understand the fundamental nature of superconductivity. To do this, researchers are using high magnetic field facilities in Oxford and around the world which are capable of generating fields a million times stronger than the Earth’s. This enables them to look inside the superconducting state and study its electronic structure. Some newly-discovered superconductors can function at unusually high temperatures, the highest being about -70°C. This is still colder than the average winter temperature in Antarctica, however, so the ultimate goal is to predict and discover superconductors that work at room temperature.

Described by Dr David Kingham, Chief Executive of Tokamak Energy, as ‘a vital local resource that enables us to tackle such a huge challenge of global importance’, CfAS provides world-leading problem solving expertise for industry and training for new generations of technicians and scientists as well as cutting-edge research into new superconducting products and processes.

Similar stories

Night-time blood pressure assessment important in diagnosing hypertension

A new study involving Oxford's Department of Engineering Science has found that monitoring night-time blood pressure is important in preventing cardiovascular disease such as stroke or heart failure.

Professor David Deutsch awarded Breakthrough Prize in Fundamental Physics

Professor David Deutsch has today been named as one of four internationally pioneering physicists to receive the 2023 Breakthrough Prize in Fundamental Physics for his work on quantum information, while Professor James Maynard has received one of six New Horizons in Mathematics Prizes.

Two MPLS Professors awarded Royal Academy of Engineering Fellowships

Professors Niki Trigoni and David Hills are among 72 leading figures in engineering and technology to be awarded a Fellowship from The Royal Academy of Engineering this week.

Decarbonising the energy system by 2050 could save trillions

The new study shows that a fast transition to clean energy is cheaper than slow or no transition. It was conducted by a team at the Institute for New Economic Thinking, Oxford Martin School, led by Professor Doyne Farmer of the Mathematical Institute.

Oxford computer scientists develop new AI to help autonomous vehicles adapt to challenging weather

Researchers in the Department of Computer Science, working with colleagues from Bogazici University in Turkey, have developed a novel artificial intelligence (AI) system that enables autonomous vehicles to achieve safer and more reliable navigation, especially in adverse weather.

More than 10 million children affected by COVID-19-associated parental and caregiver deaths

Oxford's computer scientists contributed to an international study published this week, which estimates that more than 10.5 million children experienced the death of a parent or caregiver as a result of the COVID-19 pandemic, by 1 May 2022.