Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Genome sequencing sheds light on yellow fever outbreak in Brazil.

A mosquito that transmits Yellow Fever

A pioneering Oxford University research collaboration into yellow fever virus (YFV) has shed new light on the exceptional recent outbreak in Brazil and how the virus spreads. The findings have implications for monitoring viral transmission and could potentially contribute to a strategy for eliminating YFV worldwide.

Published in Science, the international collaboration coordinated by scientists from Oxford University and FIOCRUZ Rio de Janeiro, uses modern genomic and epidemiology techniques to investigate in detail the mode of transmission of South America’s largest yellow fever virus outbreak in recent history. Techniques such as portable DNA sequencing and computational analysis allowed the team to understand the virus’s genetic make-up and analyse the age, sex and spatial distribution of human cases.

Yellow fever virus is transmitted by mosquitoes in one of two ways, via sylvatic (forest) or urban (city) transmission. Most recent cases of YFV in Brazil have been traced back to forest dwelling primates and mosquitos – a pattern characteristic of sylvatic transmission. But historical outbreaks in Brazil, and a recent outbreak of the virus in Angola, Africa, arose from urban transmission – a mode of infection that could cause a great number infections in cities. Although a very effective vaccine for YFV exists, stocks are limited and it is not given to everyone in Brazil; until recently the vaccine was given only to people living bordering forest areas thought to be at ‘high risk’ of infection.

The 2016 yellow fever outbreak was the largest outbreak in Brazil for >100 years. There were concerns that the sheer scale of the outbreak could indicate that YFV had begun to spread via urban transmission - increasing the likelihood of dangerous outbreaks in the megacites of Sao Paulo and Rio de Janeiro, where vaccination coverage is lower.

Analyses of YFV cases combined with genomic data, generated locally from affected states including Minas Gerais, revealed that the virus lineage had spread through a sylvatic cycle of transmission in primates, which grew unnoticed during 2016, before spilling over into human populations in early 2017.

Dr Nuno Faria, Sir Henry Dale Research Fellow in the Department of Zoology at Oxford University, said: ‘Ultimately, the combination of epidemiological and genomic data tells us that the YFV outbreak in Brazil was driven by sylvatic transmission. Although the conditions for urban transmission seem to be there, that fortunately didn’t happen.’

Further analyses confirmed that 85% of both human and primate YFV cases were male and aged between 35-54 years old – a tell-tale sign of sylvatic transmission and a technique that could be applied rapidly to evaluate transmission in YFV epidemics across the world.

Professor Oliver Pybus, Professor of Evolution & Infectious Disease in Oxford’s Department of Zoology said: ‘Yellow Fever virus has affected humanity for hundreds of years. It comes in waves from an animal reservoir, so we may never completely eliminate it. The problem is that we don’t understand enough yet about the complex behaviour of the virus in animal populations. We need this information to control future outbreaks –to vaccinate the right people, in the right place, at the right time.'

Professor Luiz Alcantara, Senior Scientific Researcher of reference laboratory in Flavivirus of the Brazilian Ministry of Health in Oswaldo Cruz Foundation (FIOCRUZ-RJ), Brazil, said: ‘In 48 hours we were able to generate the first genomes from the epicentre of the outbreak in Minas Gerais. As part of the ZiBRA project, in which we tracked the spread of the Zika virus using gene sequencing, have now trained dozens of researchers in Brazil. In just a couple of weeks, using new portable sequencing methods, we were able to triple the amount of yellow fever virus genomes from Brazil.’

Dr Nuno Faria said: ‘Despite being one of the most important pathogens in human history, yellow fever research has been under-funded compared to other pathogens so new techniques could bring fresh insights. Crucially, using a combination of genomic and epidemiological approaches we are now starting to understand the “hidden” dynamics of how the virus jumped from animal populations to people over space and time. The findings are testament to the benefits of emerging technologies, such as the MinION DNA sequencer, for modern medicine.’

The full paper, 'Genomic and epidemiological monitoring of yellow fever virus transmission potential,' can be read in the journal Science.

Similar stories

International collaboration sheds light on the mechanism of magnetic sensing in birds

A collaboration of biologists, chemists and physicists from the Universities of Oxford (UK) and Oldenburg (Germany) have been accumulating evidence that the magnetic sense in night migratory birds, such as the European robin, is based on a specific light‐sensitive protein in the eye.

The Conversation: what 7000 English names for birds tell us about our changing relationship with nature

Andy Gosler from the Department of Zoology writes about a unique project on ethno-ornithology.

Global Jet Watch: discovery of jets in classical novae

Scientists at the University of Oxford have discovered that classical nova explosions are accompanied by the ejection of jets of oppositely-directed hot gas and plasma, and that this persists for years following the nova eruption. Previously, such jets had only been encountered emanating from very different systems such as black holes or newly collapsing stars.

Green light for European Space Agency mission to Venus

Oxford University scientists will play a leading role in a new mission to study the geology and atmosphere of Venus, our neighbouring planet, helping determine whether it was once habitable – and why Earth became the only known planet that can sustain life.

Subatomic particle seen changing to antiparticle and back for the first time

Physicists have proved that a subatomic particle can switch into its antiparticle alter-ego and back again. An extraordinarily precise measurement made by Oxford researchers using the LHCb experiment at CERN has provided the first evidence that charm mesons can change into their antiparticle and back again.

Science Blog: The wet market sources of Covid-19: bats and pangolins have an alibi

By David Macdonald, Department of Zoology. The finger of blame has been pointed at wildlife trade in the wet markets of Wuhan, Hubei, China, where this Covid-19 outbreak seems to have originated. But could bats and pangolins really be responsible?