Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Scientists at Oxford University have developed a light-based measuring technique that could transform our ability to characterise biomolecules.

Using a microscope that detects light scattering rather than fluorescence, the researchers have demonstrated that single molecules can be observed, and their mass measured, in solution.

The research, carried out in collaboration with institutions in Germany, Sweden, Switzerland and the US, is reported in the journal Science.

Senior author Professor Philipp Kukura, from Oxford’s Department of Chemistry, said: ‘This research has emerged from a decade of work which involved making an ever more sensitive light microscope.

‘Single molecules have been observed in light microscopes since the late 1980s, but essentially all optical techniques rely on fluorescence, which is the emission of light by a material after being “excited” by the absorption of electromagnetic radiation. As immensely powerful as that is, it is not universal.’

The researchers first demonstrated the use of light scattering to visualise individual proteins – biomolecules only a few nanometres across – in 2014. But it was not until last year that they were able to improve the image quality sufficiently to compete with fluorescence.

Professor Kukura said: ‘We then addressed the question of whether we could use our visualisation approach to quantify, rather than just detect, single molecules. We realised, given that the volume and optical properties of biomolecules scale directly with mass, that our microscope should be mass sensitive. This turned out indeed to be the case, not only for proteins but also for molecules containing lipids and carbohydrates.’

It is this generality that excites the authors. Professor Justin Benesch of Oxford’s Department of Chemistry, an expert in mass measurement and co-author of the work, said: ‘The beauty of mass is that it is both a universal property of matter and extremely diagnostic of the molecule under investigation. Our approach is therefore broadly applicable and, unlike traditional single-molecule microscopy, does not rely on the addition of labels to make molecules visible.’

The researchers say the technique – which they call interferometric scattering mass spectrometry (iSCAMS) – could have applications ranging from studies of protein-protein interactions to drug discovery and even point-of-care diagnostics.

Professor Kukura said: ‘iSCAMS has lots of advantages. It measures mass with an accuracy close to that of state-of-the-art mass spectrometry, which is expensive and operates in vacuum – not necessarily representative of biological systems – whereas iSCAMS does so with only a very small volume of sample and works in essentially any aqueous environment.’

Professor Benesch added: ‘This enables a lot of the things that researchers want to quantify: do certain molecules interact and, if yes, how tightly? What is the composition of the protein in terms of how many pieces it contains, and how does it grow or fall apart?’

Because essentially every physiological and pathological process is controlled by biomolecular interactions in solution, the researchers say this technology has considerable potential impact. Professor Kukura said: ‘The universal applicability, combined with the fact that the instruments are close to shoebox size, can be operated easily, and allow the user to see the molecules in real time, is tremendously exciting.’

The team is in the process of commercialising the technology to provide access to other researchers who are not experts or may not even use optical microscopy. The researchers say: ‘It has the potential, we think, to revolutionise how we study biomolecules and their interactions.’

The full paper, 'Quantitative mass imaging of single biological macromolecules,' can be read in the journal Science.

Similar stories

£100 million donation from Ineos to create new institute to fight antimicrobial resistance

Chemistry Funding Medical science Zoology

Ineos, one of the world’s largest manufacturing companies, and the University of Oxford are launching a new world-leading institute to combat the growing global issue of antimicrobial resistance (AMR), which currently causes an estimated 1.5 million excess deaths each year.

Eight Oxford researchers, including five from MPLS, awarded major European Research Council funding

Chemistry Engineering Funding Plant sciences Zoology

European Research Council grants worth more than €16.3 million have been awarded to University of Oxford researchers for a range of cutting-edge projects.

$10 million gift for new Nanoscience Institute in Oxford

Biomedical engineering Chemistry Engineering Funding Materials science Medical science Physics

A new institute for nanoscience research is to open in Oxford thanks to a $10 million gift from The Kavli Foundation.

Institute of Physics awards for MPLS researchers

Award Chemistry Physics

Three MPLS academics and researchers have been awarded 2020 IOP Medals for their contributions to Physics - two in the Department of Physics and one in the Department of Chemistry.

Major Chemistry Sponsor forms New Public/Private Partnership to help manufacture and distribute Oxford Covid-19 Vaccine

Business and Industry COVID-19 Chemistry

Leading lights at Oxford University paved the way towards Oxford’s goal of global, rapid and equitable access to a safe, effective COVID-19 vaccine by facilitating an innovative public-private agreement for the manufacture and distribution of Oxford’s vaccine, ChAdOx1 nCoV-19.

Prof Angela Russell awarded 2021 Harrington UK Rare Disease Scholar Award

Award Chemistry Funding Medical science

The Harrington Discovery Institute (HDI) in the US has announced five winners of its inaugural UK Rare Disease Scholar Award competition.

Similar stories

£100 million donation from Ineos to create new institute to fight antimicrobial resistance

Chemistry Funding Medical science Zoology

Ineos, one of the world’s largest manufacturing companies, and the University of Oxford are launching a new world-leading institute to combat the growing global issue of antimicrobial resistance (AMR), which currently causes an estimated 1.5 million excess deaths each year.

Eight Oxford researchers, including five from MPLS, awarded major European Research Council funding

Chemistry Engineering Funding Plant sciences Zoology

European Research Council grants worth more than €16.3 million have been awarded to University of Oxford researchers for a range of cutting-edge projects.

$10 million gift for new Nanoscience Institute in Oxford

Biomedical engineering Chemistry Engineering Funding Materials science Medical science Physics

A new institute for nanoscience research is to open in Oxford thanks to a $10 million gift from The Kavli Foundation.

Institute of Physics awards for MPLS researchers

Award Chemistry Physics

Three MPLS academics and researchers have been awarded 2020 IOP Medals for their contributions to Physics - two in the Department of Physics and one in the Department of Chemistry.

Major Chemistry Sponsor forms New Public/Private Partnership to help manufacture and distribute Oxford Covid-19 Vaccine

Business and Industry COVID-19 Chemistry

Leading lights at Oxford University paved the way towards Oxford’s goal of global, rapid and equitable access to a safe, effective COVID-19 vaccine by facilitating an innovative public-private agreement for the manufacture and distribution of Oxford’s vaccine, ChAdOx1 nCoV-19.

Prof Angela Russell awarded 2021 Harrington UK Rare Disease Scholar Award

Award Chemistry Funding Medical science

The Harrington Discovery Institute (HDI) in the US has announced five winners of its inaugural UK Rare Disease Scholar Award competition.