Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.
'Sorry, we're closed' sign in a window. © Tobias Heine from Pixabay

Researchers from three MPLS departments (Statistics, Engineering Science and Computer Science) have led and contributed to a paper in Science which assessed the most effective non-pharmaceutical interventions at suppressing transmission of COVID-19. Researchers from other UK universities, as well as universities in Australia, the Czech Republic and the USA, were also involved. The research showed that closing all educational institutions, limiting gatherings to 10 people or less, and closing face-to-face businesses each reduced transmission considerably. The additional effect of stay-at-home orders was comparatively small.

The paper, Inferring the effectiveness of government interventions against COVID-19, was published in Science on Tuesday 15th December.  Read the full paper

Similar stories

Quantum Technologies for Fundamental Physics: exciting science awaits

Funding Physics Research

Oxford’s Department of Physics is playing a key role in three of the seven quantum projects supported by UK Research and Innovation (UKRI).

UK population movement falls 59%, compared to -89% in March - COVID-19 Monitor

COVID-19 Engineering Maths Research

The latest data from Oxford’s COVID-19 Impact Monitor shows the January lockdown has, so far, had one third less national impact on movement than the March shutdown. The figures demonstrate that some regions are still moving at more than 50% of pre-pandemic levels, despite the tough restrictions and calls for people to remain at home.

COVID-19 transmission chains in the UK accurately traced using genomic epidemiology

COVID-19 Research Zoology

A team of scientists, led by researchers from the Universities of Oxford and Edinburgh, has analysed the first wave of the COVID-19 outbreak in the UK and produced the most fine-scaled and comprehensive genomic analysis of transmission of any epidemic to date.

Light-carrying chips advance machine learning

Materials science Research

A team of international scientists has demonstrated an initial prototype of a photonic processor using tiny rays of light confined inside silicon chips that can process information much more rapidly than electronic chips and also in parallel - something traditional chips are incapable of doing.

Professor Martin Booth receives ERC Proof of Concept grant

Engineering Funding

The project will develop the commercial potential of the novel imaging technology developed by Prof Booth, adaptive optical microscopy.

Similar stories

Quantum Technologies for Fundamental Physics: exciting science awaits

Funding Physics Research

Oxford’s Department of Physics is playing a key role in three of the seven quantum projects supported by UK Research and Innovation (UKRI).

UK population movement falls 59%, compared to -89% in March - COVID-19 Monitor

COVID-19 Engineering Maths Research

The latest data from Oxford’s COVID-19 Impact Monitor shows the January lockdown has, so far, had one third less national impact on movement than the March shutdown. The figures demonstrate that some regions are still moving at more than 50% of pre-pandemic levels, despite the tough restrictions and calls for people to remain at home.

COVID-19 transmission chains in the UK accurately traced using genomic epidemiology

COVID-19 Research Zoology

A team of scientists, led by researchers from the Universities of Oxford and Edinburgh, has analysed the first wave of the COVID-19 outbreak in the UK and produced the most fine-scaled and comprehensive genomic analysis of transmission of any epidemic to date.

Light-carrying chips advance machine learning

Materials science Research

A team of international scientists has demonstrated an initial prototype of a photonic processor using tiny rays of light confined inside silicon chips that can process information much more rapidly than electronic chips and also in parallel - something traditional chips are incapable of doing.

Professor Martin Booth receives ERC Proof of Concept grant

Engineering Funding

The project will develop the commercial potential of the novel imaging technology developed by Prof Booth, adaptive optical microscopy.