Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

The PHOENICS project brings together world leaders in neuromorphic photonic computing to achieve for the first time energy efficient petascale processing powers with ultra-high bandwidth. This is the processing power required by AI to reach its full potential.

A computer memory chip in the shape of a human brain

The EU’s new 5.8 million Euro project using light to provide the ultrafast computing rates needed by artificial intelligence (AI) kicked off on March 31st. The 4-year project is a joint research effort of the coordinating University of Münster (WWU, Germany) in collaboration with:

  • University of Exeter (UK),
  • École polytechnique fédérale de Lausanne (EPFL, Switzerland),
  • Nanoscribe GmbH (Germany),
  • University of Oxford (UK)
  • Heinrich Hertz Institute of the Fraunhofer Gesellschaft (HHI, Germany)
  • University of Ghent (Belgium)
  • IBM Research GmbH (Switzerland)
  • MicroR Systems (Switzerland)

Applications employing AI pervade more and more of today’s digitized society but pose enormous challenges for electronic hardware in terms of computing power and storage capacity. AI needs processing power growing at rate more than 5x higher than given by Moore’s Law and this is not possible with current trends. The PHOENICS project aims to address these challenges with innovative hardware approaches for processing the enormous data volumes, which are needed by demanding AI applications. By moving away from electronic towards photonic approaches, the PHOENICS project will establish disruptive methods for ultrafast information processing.

As a new paradigm for AI computing, the development of photonic neuromorphic processors will be the key innovation, which promises to deliver unprecedented computing power and energy efficiency.

The acronym PHOENICS stands for “Photonic enabled petascale in-memory computing with femtojoule energy consumption” and sums up the three goals of the project: In contrast to traditional hardware, the concept of in-memory computing will allow data processing more similar to the human brain by removing the separation between computing and data storage units; photonic technology provides high speed data transport where current electronic systems face severe limitations; taken together, this will lead to significant energy advantages.        

The PHOENICS architecture is based on the hybrid integration of three different chip-platforms: a frequency microcomb chip, which is developed jointly by EPFL and MicroR Systems, an InP (indium phosphide) active modulation unit developed by HHI, complemented with a silicon photonics processor developed by the Universities of Exeter, Oxford, and Ghent. WWU, Nanoscribe GmbH, and IBM will design the system architecture and join the chip platforms. 

Over the 4-year funding period, the consortium plans to establish photonic computing as a competitive approach for machine learning.

European FlagThe project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101017237.

Similar stories

Chemistry researchers to develop novel energy and bioelectronic materials with new EPSRC Programme Grant

Professors Andrew Goodwin and Iain McCullogh in the Department of Chemistry are part of the team of 10 researchers at the Universities of Oxford and Cambridge that will be at the forefront of work that on a new generation of soft functional materials.

MPLS Division receives Research Excellence Framework (REF) 2021 results

Today the UK funding bodies have published the results of the UK’s most recent national research assessment exercise, REF 2021.

Three MPLS researchers secure multi-million pound European grants

Four ‘excellent research leaders’ at Oxford, three of them from MPLS Division, have today been awarded major European Research Council (ERC) Advanced Grants to fund boundary-pushing research projects in Biology, Linguistics, Mathematics and Physics.

Government gives £15 million to build software and computer systems at the heart of a new international telescope system

Six institutions, including the University of Oxford, are leading efforts to deliver computational systems that will enable the world’s largest radio telescope

Oxford joins UK consortium to build auto-calibrated quantum control system

Funded by Innovate UK, the £6.8M project will apply machine learning techniques to find fast, automated, and scalable ways to calibrate quantum computers. The aim is to build a system capable of controlling hundreds of qubits simultaneously across different types of quantum hardware.

Professor Susie Speller awarded a five year £2.4M Fellowship under the new EPSRC Open Plus scheme

Prof Speller will lead research on high temperature superconductors for fusion technologies and new initiatives aimed at widening participation in STEM.