Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

A team of scientists at the Rosalind Franklin Institute and Oxford University, led by Professor Ben Davis and Professor Veronique Gouverneur, have created a light-activated system that allows new side-chains to be grafted on to proteins, paving the way for a host of applications in areas such as drug development or vaccines.

Molecular structure model

The study is published in the journal Nature.

This work represents a large collaborative effort from a number of Oxford-based research groups, including Professors Ben Davis, Shabaz Mohammed, Andrew Baldwin, Akane Kawamura, Richard Compton, and Veronique Gouverneur. The research builds on previous work that proved the concept of side-chain grafting in protein modification. The new work makes this process substantially more efficient, introduces the idea of using light to control the process, and allows the use of latently reactive side-chains.

Professor Ben Davis, Science Director for Next Generation Chemistry at the Rosalind Franklin Institute and Professor in the Department of Chemistry, is a co-senior author of this paper and this year’s recipient of the Davy medal awarded by the Royal Society. He said, ‘There’s a lot of work taking place on gene editing – trying to reprogram biology from the “recipe” onwards. But while genes are often associated with function nowadays, proteins – and the things they make – are the molecules that really make things happen in biology. This work looks at methods for editing proteins, all of which boils down to making and breaking bonds in molecules. Nature does this beautifully, but only with limited scope, using enzymes as catalysts – we set out here to create a method using chemical catalysts.’

Read the full science highlight on the Rosalind Franklin Institute website.

Read the publication: Josephson et al. Mild, Light-Driven, Posttranslational Installation of Reactive Protein Side-Chains, Nature (2020)

With thanks to the Rosalind Franklin Institute for permission to republish this report

Similar stories

7 attributes for a successful Net Zero

A new Nature Climate Change paper highlights the urgency of emission reductions and emphasises the need for social and environmental integrity. There are clear risks of getting net zero wrong. If interpreted right and governed well, net zero can be an effective frame of reference for climate action.

Safer carbon capture and storage

Depleted oil fields are one of the targets for carbon dioxide burial and related technology development. New research from the Department of Earth Sciences, published in Nature, shows that subsurface microbial activity may make this type of carbon burial target more complex than originally thought.

New approach to predicting battery failure could help maintain electricity for millions around the world

The new method of predicting battery failure is 15 – 20% more accurate than current approaches.

New resistance-busting antibiotic combination could extend the use of ‘last-resort’ antibiotics

Scientists have discovered a new potential treatment that has the ability to reverse antibiotic resistance in bacteria that cause conditions such as sepsis, pneumonia, and urinary tract infections.

Key surveys overestimate COVID-19 vaccination rates in the USA

Estimates of COVID-19 vaccine uptake in the USA based on large surveys that are used to guide policy-making decisions tend to overestimate the number of vaccinated individuals, research published in Nature suggests.