Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click on 'Find out more' to see our Cookie statement.

Oxford’s Department of Physics is playing a key role in three of the seven quantum projects supported by UK Research and Innovation (UKRI).

Artist's impression of the Big Bang

Today, UKRI announced the launch of the Quantum Technologies for Fundamental Physics (QTFP) programme, which will support scientists using quantum technology to study the universe in new ways in order to determine the nature of dark matter, detect gravitational waves and study the physics of black holes. Professor Ian Shipsey, Head of the Department of Physics, has championed the programme since its inception:

‘This cutting-edge interdisciplinary programme brings together EPSRC and STFC scientists from UK universities, national labs and National Quantum Technology Programme (NQTP) Hubs, with international partners to conduct seven ambitious experiments. Just as quantum computing promises to revolutionise traditional computing, technologies such as quantum sensors have the potential to radically change our approach to understanding the universe... Exciting science awaits!'

The QTFP comprises seven projects to date: QSNET; Quantum-enhanced interferometry for New Physics; Quantum Sensors for the Hidden Sector; Determination of Absolute Neutrino Mass using Quantum Technologies; Quantum Simulators for Fundamental Physics; Quantum-enhanced Superfluid Technologies for Dark Matter and Cosmology; and a UK Atom Interferometer Observatory and NetworkOxford is involved in three of these:

Quantum Sensors for the Hidden SectorThe project will use cutting-edge quantum technology to try to detect hidden sector particles – hypothetical quantum fields and their particles which are yet to be observed. Discoveries and advances in this field could provide insights into what happened after the big bang and solve the dark matter problem – the observation that galaxies and the observable Universe are heavier than their observed constituents.

UK Atom Interferometer Observatory and NetworkThe AION project brings together an interdisciplinary team of researchers, engineers and PhD students from the particle physics, ultra-cold atom and astronomy communities to develop the technology to build and reap the scientific rewards from the first large-scale atom interferometer in the UK. The funding will support the design of an 10m atom interferometer, leading towards the construction of the instrument in Oxford and paving the way for larger-scale future experiments to be located in the UK.

Quantum-enhanced Superfluid Technologies for Dark Matter and Cosmology - more details to follow

 

Similar stories

7 attributes for a successful Net Zero

A new Nature Climate Change paper highlights the urgency of emission reductions and emphasises the need for social and environmental integrity. There are clear risks of getting net zero wrong. If interpreted right and governed well, net zero can be an effective frame of reference for climate action.

Professor Myles Allen appointed CBE

Congratulations to Professor Myles Allen, Professor of Geosystem Science in the Environmental Change Institute, School of Geography and the Environment and Department of Physics, who has been appointed CBE in the New Year's Honours 2022 for services to climate change attribution, prediction and net zero.

Safer carbon capture and storage

Depleted oil fields are one of the targets for carbon dioxide burial and related technology development. New research from the Department of Earth Sciences, published in Nature, shows that subsurface microbial activity may make this type of carbon burial target more complex than originally thought.

New approach to predicting battery failure could help maintain electricity for millions around the world

The new method of predicting battery failure is 15 – 20% more accurate than current approaches.